A NEW CONSTRUCTION OF COMPACT 8-MANIFOLDS WITH HOLONOMY $\operatorname{Spin}(7)$

DOMINIC JOYCE

1. Introduction

In Berger's classification [1] of holonomy groups of Riemannian manifolds there are two special cases, the exceptional holonomy groups G_{2} in 7 dimensions and $\operatorname{Spin}(7)$ in 8 dimensions. Bryant [2] and Bryant and Salamon [3] showed that such metrics exist locally, and wrote down explicit, complete metrics with holonomy G_{2} and $\operatorname{Spin}(7)$ on noncompact manifolds.

The first examples of metrics with holonomy G_{2} and $\operatorname{Spin}(7)$ on compact 7 - and 8 -manifolds were constructed by the author in [10], [11], [12]. The survey paper [13] provides a good introduction to these constructions. Here is a brief description of the method used in [10] to construct compact 8 -manifolds with holonomy $\operatorname{Spin}(7)$, divided into four steps.
(a) We start with a flat $\operatorname{Spin}(7)$-structure $\left(\Omega_{0}, g_{0}\right)$ on the 8 -torus T^{8}, and a finite group Γ of isometries of T^{8} preserving $\left(\Omega_{0}, g_{0}\right)$. Then T^{8} / Γ is an orbifold, a singular manifold with only quotient singularities.
(b) For certain Γ one can resolve the singularities of T^{8} / Γ in a natural way, using complex geometry. This gives a nonsingular, compact 8 -manifold M, and a projection $\pi: M \rightarrow T^{8} / \Gamma$.

[^0](c) We write down a 1-parameter family of $\operatorname{Spin}(7)$-structures $\left(\Omega_{t}, g_{t}\right)$ on M for $t \in(0, \epsilon)$, such that $\left(\Omega_{t}, g_{t}\right)$ has small torsion when t is small, and converges to the singular $\operatorname{Spin}(7)$-structure $\pi^{*}\left(\Omega_{0}, g_{0}\right)$ as $t \rightarrow 0$.
(d) Using analysis we prove that for small t, the $\operatorname{Spin}(7)$-structure $\left(\Omega_{t}, g_{t}\right)$ can be deformed to a nearby $\operatorname{Spin}(7)$-structure ($\left.\tilde{\Omega}_{t}, \tilde{g}_{t}\right)$ on M, with zero torsion. Then \tilde{g}_{t} has holonomy $\operatorname{Spin}(7)$.

In this paper we will describe a new method for constructing compact 8 -manifolds with holonomy $\operatorname{Spin}(7)$, in which one starts not with a torus T^{8} but with a Calabi-Yau 4 -orbifold Y with isolated singular points p_{1}, \ldots, p_{k}. We use algebraic geometry to find a number of suitable complex orbifolds Y, which in the simplest cases are hypersurfaces in weighted projective spaces $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$.

Then, instead of a finite group Γ, we suppose we have an antiholomorphic, isometric involution $\sigma: Y \rightarrow Y$, whose only fixed points are p_{1}, \ldots, p_{k}. This involution does not preserve the $\mathrm{SU}(4)$-structure on Y, but it does preserve the induced $\operatorname{Spin}(7)$-structure. We think of σ as breaking the structure group of Y from $\operatorname{SU}(4)$ down to $\operatorname{Spin}(7)$. Define $Z=Y /\langle\sigma\rangle$. Then Z is an orbifold with isolated singular points p_{1}, \ldots, p_{k}, and the Calabi-Yau structure on Y induces a torsion-free Spin(7)-structure on Z.

If the singularities of Z are of a suitable kind, we can resolve them to get a compact 8 -manifold M with holonomy $\operatorname{Spin}(7)$, as in steps (b)(d) above. To perform the resolution we need to find Asymptotically Locally Euclidean Spin(7)-manifolds corresponding to the singularities of Z, which are a special class of noncompact $\operatorname{Spin}(7)$-manifolds asymptotic to quotient singularities \mathbb{R}^{8} / G.

Our construction then yields new examples of compact 8-manifolds M with holonomy $\operatorname{Spin}(7)$. We calculate the Betti numbers $b^{k}(M)$ in each case. They turn out to be rather different to the Betti numbers arising from the previous construction in [10]. In particular, in this new construction the middle Betti number b^{4} tends to be rather large, as big as 11662 in one example, whereas the manifolds of [10] all satisfied $b^{4} \leq$ 162.

Sections 2 and 3 introduce the holonomy group $\operatorname{Spin}(7)$ and CalabiYau orbifolds, and $\S 4$ defines the idea of ALE Spin(7)-manifold, and gives a number of examples. Section 5 then proves our main result, that given a Calabi-Yau 4-orbifold Y and an antiholomorphic involution
$\sigma: Y \rightarrow Y$ satisfying certain conditions, we can construct a compact 8-manifold M with holonomy $\operatorname{Spin}(7)$.

We explain in $\S 6$ how to use the construction in practice, and ways of computing the Betti numbers of the resulting 8 -manifolds M. Sections $7-10$ apply the construction to generate new examples of compact 8 manifolds with holonomy $\operatorname{Spin}(7)$, and we finish in $\S 11$ with a discussion of our results.

The material in this paper will be discussed in the author's book [14], which pays much attention to the exceptional holonomy groups, and also gives a more sophisticated version of the original construction [10] of compact 8 -manifolds with holonomy $\operatorname{Spin}(7)$.

2. Background on the holonomy group $\operatorname{Spin}(7)$

We now collect together some facts we will need about the holonomy group $\operatorname{Spin}(7)$, taken from the books by Salamon [18, Ch. 12] and the author [14, Ch. 10]. First we define $\operatorname{Spin}(7)$ as a subgroup of $\mathrm{GL}(8, \mathbb{R})$.

Definition 2.1. Let \mathbb{R}^{8} have coordinates $\left(x_{1}, \ldots, x_{8}\right)$. Write $\mathrm{d} \mathbf{x}_{i j k l}$ for the 4 -form $\mathrm{d} x_{i} \wedge \mathrm{~d} x_{j} \wedge \mathrm{~d} x_{k} \wedge \mathrm{~d} x_{l}$ on \mathbb{R}^{8}. Define a 4 -form Ω_{0} on \mathbb{R}^{8} by

$$
\begin{align*}
\Omega_{0} & =\mathrm{d} \mathbf{x}_{1234}+\mathrm{d} \mathbf{x}_{1256}+\mathrm{d} \mathbf{x}_{1278}+\mathrm{d} \mathbf{x}_{1357}-\mathrm{d} \mathbf{x}_{1368} \\
& -\mathrm{d} \mathbf{x}_{1458}-\mathrm{d} \mathbf{x}_{1467}-\mathrm{d} \mathbf{x}_{2358}-\mathrm{d} \mathbf{x}_{2367}-\mathrm{d} \mathbf{x}_{2457} \tag{1}\\
& +\mathrm{d} \mathbf{x}_{2468}+\mathrm{d} \mathbf{x}_{3456}+\mathrm{d} \mathbf{x}_{3478}+\mathrm{d} \mathbf{x}_{5678} .
\end{align*}
$$

The subgroup of $\mathrm{GL}(8, \mathbb{R})$ preserving Ω_{0} is $\operatorname{Spin}(7)$. It is a compact, connected, simply-connected, semisimple, 21-dimensional Lie group, which is isomorphic as a Lie group to the double cover of $\mathrm{SO}(7)$. This group also preserves the orientation on \mathbb{R}^{8} and the Euclidean metric $g_{0}=$ $\mathrm{d} x_{1}^{2}+\cdots+\mathrm{d} x_{8}^{2}$ on \mathbb{R}^{8}.

Let M be an 8 -manifold. For each $p \in M$, define $\mathcal{A}_{p} M$ to be the subset of 4 -forms $\Omega \in \Lambda^{4} T_{p}^{*} M$ for which there exists an isomorphism between $T_{p} M$ and \mathbb{R}^{8} identifying Ω and the 4 -form Ω_{0} of (1). Let $\mathcal{A} M$ be the bundle with fibre $\mathcal{A}_{p} M$ at each $p \in M$. Then $\mathcal{A} M$ is a subbundle of $\Lambda^{4} T^{*} M$ with fibre $\mathrm{GL}(8, \mathbb{R}) / \operatorname{Spin}(7)$. It is not a vector subbundle, and has codimension 27 in $\Lambda^{4} T^{*} M$. We say that a 4 -form Ω on M is admissible if $\left.\Omega\right|_{p} \in \mathcal{A}_{p} M$ for each $p \in M$.

Now the conventional definition of a $\operatorname{Spin}(7)$-structure on an 8 manifold M (which we will not use) is a principal subbundle Q of the frame bundle \mathcal{F} with structure group $\operatorname{Spin}(7)$. There is a $1-1$ corre-
spondence between $\operatorname{Spin}(7)$-structures Q in this sense, and admissible 4 -forms $\Omega \in C^{\infty}(\mathcal{A M})$ on M. Each $\operatorname{Spin}(7)$-structure Q induces a 4 form Ω, a metric g and an orientation on M, corresponding to Ω_{0}, g_{0} and the orientation on \mathbb{R}^{8}.

Definition 2.2. Let M be an 8 -manifold, Ω an admissible 4 -form on M, and g the associated metric. We shall abuse notation by referring to the pair (Ω, g) as a $\operatorname{Spin}(7)$-structure on M. Let ∇ be the Levi-Civita connection of g. We call $\nabla \Omega$ the torsion of (Ω, g), and we say that (Ω, g) is torsion-free if $\nabla \Omega=0$. A triple (M, Ω, g) is called a Spin(7)-manifold if M is an 8 -manifold, and (Ω, g) a torsion-free $\operatorname{Spin}(7)$-structure on M.

Let (Ω, g) be a $\operatorname{Spin}(7)$-structure on an 8 -manifold M. Then (Ω, g) is torsion-free if and only if $\mathrm{d} \Omega=0$. If (Ω, g) is torsion-free then g is Ricci-flat, and M is spin and has a constant positive spinor. If M is compact and $\operatorname{Hol}(g)=\operatorname{Spin}(7)$ then the positive Dirac operator

$$
D_{+}: C^{\infty}\left(S_{+}\right) \rightarrow C^{\infty}\left(S_{-}\right)
$$

has kernel \mathbb{R} and cokernel 0 . Thus D_{+}has index 1 .
But the index of D_{+}is the \hat{A}-genus $\hat{A}(M)$, and is given by

$$
\text { (2) } \quad 24 \hat{A}(M)=-1+b^{1}(M)-b^{2}(M)+b^{3}(M)+b_{+}^{4}(M)-2 b_{-}^{4}(M) \text {, }
$$

where $b^{k}=b^{k}(M)$ are the Betti numbers of M. Thus a compact 8manifold M with holonomy $\operatorname{Spin}(7)$ must satisfy $b^{3}+b_{+}^{4}=b^{2}+b_{-}^{4}+25$. As in [10, Th. C], one can use this to show:

Theorem 2.3. Let (M, Ω, g) be a compact $\operatorname{Spin}(7)$-manifold. Then $\operatorname{Hol}(g)=\operatorname{Spin}(7)$ if and only if M is simply-connected, and $b^{3}+b_{+}^{4}=$ $b^{2}+b_{-}^{4}+25$.

The following result [10, Th. D] describes the moduli space of holonomy $\operatorname{Spin}(7)$ metrics.

Theorem 2.4. Let M be a compact 8-manifold admitting metrics with holonomy $\operatorname{Spin}(7)$. Then the moduli space of metrics with holonomy $\operatorname{Spin}(7)$ on M, up to diffeomorphisms isotopic to the identity, is a smooth manifold of dimension $1+b_{-}^{4}(M)$.

Our next proposition follows from the ideas of $[14, \S 10.6]$.
Proposition 2.5. Let M be an 8 -manifold. Then there exists a tubular open neighbourhood $\mathcal{T} M$ of $\mathcal{A} M$ in $\Lambda^{4} T^{*} M$ which is a fibration
over M, a smooth map of fibre bundles $\Theta: \mathcal{T} M \rightarrow \mathcal{A} M$, and positive constants ρ, C, such that
(i) If (Ω, g) is a $\operatorname{Spin}(7)$-structure and ξ a 4 -form on M with $\mid \xi-$ $\left.\Omega\right|_{g} \leq \rho$, then $\xi \in C^{\infty}(\mathcal{T} M)$.
(ii) Suppose (Ω, g) is a $\operatorname{Spin}(7)$-structure on M, and ξ a 4-form on M with $|\xi-\Omega|_{g} \leq \rho$. Write $\Omega^{\prime}=\Theta(\xi)$, and let $\left(\Omega^{\prime}, g^{\prime}\right)$ be the associated $\operatorname{Spin}(7)$-structure. Then $\left|\xi-\Omega^{\prime}\right|_{g^{\prime}} \leq|\xi-\Omega|_{g}$. If (Ω, g) is also torsion-free, then $\left|\nabla^{\prime}\left(\xi-\Omega^{\prime}\right)\right|_{g^{\prime}} \leq C|\nabla(\xi-\Omega)|_{g}$.

Here ∇, ∇^{\prime} are the Levi-Civita connections of g and g^{\prime}, and $|\cdot|_{g},|\cdot|_{g^{\prime}}$ the norms defined using g and g^{\prime}.

This is an entirely local result, involving calculations at a point, and ρ, C are independent of M. The inequality $\left|\xi-\Omega^{\prime}\right|_{g^{\prime}} \leq|\xi-\Omega|_{g}$ in part (ii) should be understood as saying that $\Omega^{\prime}=\Theta(\xi)$ is the $\operatorname{Spin}(7)$-form closest to ξ. That is, $\mathcal{T} M$ is a small open neighbourhood of $\mathcal{A} M$ in $\Lambda^{4} T^{*} M$, and Θ is the projection from $\mathcal{T} M$ to the nearest point in $\mathcal{A} M$. But as we have not fixed a metric on M, we do not have a way to measure distance in $\Lambda^{4} T^{*} M$, and so we use the metrics g, g^{\prime} associated to the $\operatorname{Spin}(7)$-forms Ω, Ω^{\prime} to do this.

Our final result is proved in [10, Th. A \& Th. B], and also in [14, Ch. 13].

Theorem 2.6. Let λ, μ, ν be positive constants. Then there exist positive constants κ, K such that whenever $0<t \leq \kappa$, the following is true.

Let M be a compact 8-manifold, and (Ω, g) a $\operatorname{Spin}(7)$-structure on M. Suppose that ϕ is a smooth 4 -form on M with $\mathrm{d} \Omega+\mathrm{d} \phi=0$, and
(i) $\|\phi\|_{L^{2}} \leq \lambda t^{9 / 2}$ and $\|\mathrm{d} \phi\|_{L^{10}} \leq \lambda t$,
(ii) the injectivity radius $\delta(g)$ satisfies $\delta(g) \geq \mu t$, and
(iii) the Riemann curvature $R(g)$ satisfies $\|R(g)\|_{C^{0}} \leq \nu t^{-2}$.

Then there exists a smooth, torsion-free $\operatorname{Spin}(7)$-structure $(\tilde{\Omega}, \tilde{g})$ on M with $\|\tilde{\Omega}-\Omega\|_{C^{0}} \leq K t^{1 / 2}$.

Here is how to interpret this result. As $\nabla \Omega=0$ if and only if $\mathrm{d} \Omega=0$ and $\mathrm{d} \phi+\mathrm{d} \Omega=0$, the torsion $\nabla \Omega$ is determined by $\mathrm{d} \phi$. Thus we can think of ϕ as a first integral of the torsion of (Ω, g). So $\|\phi\|_{L^{2}}$ and $\|\mathrm{d} \phi\|_{L^{10}}$ are both measures of the torsion of (Ω, g). As t is small, part (i) of the theorem says that (Ω, g) has small torsion in a certain sense.

Parts (ii) and (iii) say that the injectivity radius of g should not be too small, and its curvature not too large. When a metric becomes singular, in general its injectivity radius goes to zero and its curvature becomes infinite. So we can interpret (ii) and (iii) as saying that g is not too close to being singular.

Thus, the theorem as a whole says that if the torsion of (Ω, g) is small enough, and g is not too singular, then we can deform (Ω, g) to a nearby, torsion-free $\operatorname{Spin}(7)$-structure $(\tilde{\Omega}, \tilde{g})$ on M. We can hence use Theorem 2.3 to show that if M is simply-connected and $b^{3}+b_{+}^{4}=b^{2}+b_{-}^{4}+25$, then \tilde{g} has holonomy $\operatorname{Spin}(7)$.

We prove Theorem 2.6 using analysis: we write the condition that $(\tilde{\Omega}, \tilde{g})$ be torsion-free as a nonlinear elliptic p.d.e., which can be approximated by a linear elliptic p.d.e. when $\tilde{\Omega}-\Omega$ is small. Then we use tools such as Sobolev spaces, the Sobolev Embedding Theorem and elliptic regularity to show that this nonlinear elliptic p.d.e. has a smooth solution.

3. Calabi-Yau manifolds and orbifolds

We now give a brief introduction to Calabi-Yau geometry, and the relation between Calabi-Yau 4 -folds and $\operatorname{Spin}(7)$-manifolds. Some suitable references are Salamon [18, Ch. 8] and the author [14, Ch. 6].

Definition 3.1. A Calabi-Yau manifold or orbifold is a compact Kähler manifold or orbifold (Y, J, g) of dimension m, with $\operatorname{Hol}(g)=$ $\mathrm{SU}(m)$.

Now Calabi-Yau manifolds and orbifolds are nearly the same thing as Ricci-flat Kähler manifolds and orbifolds, as we see in the next proposition. It follows from elementary properties of holonomy groups and Kähler geometry.

Proposition 3.2. Any Calabi-Yau orbifold (Y, J, g) is Ricci-flat. Conversely, let (Y, J, g) be a compact Ricci-flat Kähler orbifold of dimension m, with singular set S. Suppose that $Y \backslash S$ is simply-connected and $h^{p, 0}(Y)=0$ for $0<p<m$. Then $\operatorname{Hol}(g)=\operatorname{SU}(m)$, so Y is a Calabi-Yau orbifold.

But using Yau's proof of the Calabi conjecture [20], one can show that suitable complex orbifolds admit Ricci-flat Kähler metrics.

Theorem 3.3. Let (Y, J) be a compact complex orbifold admit-
ting Kähler metrics, with $c_{1}(Y)=0$. Then there is a unique Ricci-flat Kähler metric in each Kähler class on Y.

Now the action of $\mathrm{SU}(m)$ on \mathbb{C}^{m} fixes the complex m-form $\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{m}$. It follows by general principles of Riemannian holonomy that any Riemannian manifold or orbifold with holonomy $\operatorname{SU}(m)$ admits a complex m-form θ corresponding to $\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{m}$ which is constant under the Levi-Civita connection ∇. So we get:

Proposition 3.4. Let (Y, J, g) be a Calabi-Yau manifold or orbifold of dimension m, with Kähler form ω. Then there exists a constant $(m, 0)$-form θ on Y, such that near every point $p \in Y$ we can choose complex coordinates $\left(z_{1}, \ldots, z_{m}\right)$ in which

$$
\begin{align*}
g & =\left|\mathrm{d} z_{1}\right|^{2}+\cdots+\left|\mathrm{d} z_{m}\right|^{2}, \\
\omega & =\frac{i}{2}\left(\mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1}+\cdots+\mathrm{d} z_{m} \wedge \mathrm{~d} \bar{z}_{m}\right), \tag{1}\\
\text { and } \quad \theta & =\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{m}
\end{align*}
$$

at p. This form θ is unique up to multiplication by $e^{i \phi}$ for some $\phi \in[0,2 \pi)$.

We call θ the holomorphic volume form of Y. Now we restrict our attention to complex dimension 4. Here is a criterion for a complex 4 -orbifold to be Calabi-Yau.

Proposition 3.5. Let (Y, J) be a compact complex 4-orbifold with $c_{1}(Y)=0$, admitting Kähler metrics. Suppose $Y \backslash S$ is simply-connected, where S is the singular set of Y, and $h^{2,0}(Y)=0$. Then each Kähler class on Y contains a unique metric g such that (Y, J, g) is a Calabi-Yau 4 -orbifold.

Proof. As $\pi_{1}(Y \backslash S)=0$ we have $b^{1}(Y)=0$, so that $h^{1,0}(Y)=0$. Since $\pi_{1}(Y \backslash S)=0$ and $c_{1}(Y)=0$ the canonical bundle K_{Y} of Y is trivial, and this implies that $h^{p, 0}(Y)=h^{4-p, 0}(Y)$. Thus $h^{3,0}(Y)=0$. But we are given that $h^{2,0}(Y)=0$. Hence $h^{p, 0}(Y)=0$ for $0<p<4$, and the proposition follows from Proposition 3.2 and Theorem 3.3. q.e.d.

A Calabi-Yau 4-fold Y has holonomy $\operatorname{SU}(4)$, and so carries a natural torsion-free $\operatorname{SU}(4)$-structure. Since $\mathrm{SU}(4) \subset \operatorname{Spin}(7) \subset \mathrm{SO}(8)$, this $\mathrm{SU}(4)$-structure induces a $\operatorname{Spin}(7)$-structure on Y, which is also torsionfree.

Proposition 3.6. Suppose (Y, J, g) is a Calabi-Yau 4-orbifold, with Kähler form ω and holomorphic volume form θ. Define a 4 -form Ω on
Y by $\Omega=\frac{1}{2} \omega \wedge \omega+\operatorname{Re}(\theta)$. Then (Ω, g) is a torsion-free $\operatorname{Spin}(7)$-structure on Y.

Proof. Let p be a point in Y. Then by Proposition 3.4 we can choose complex coordinates $\left(z_{1}, \ldots, z_{4}\right)$ near p such that g, ω and θ are given by (1) at p, with $m=4$. Define real coordinates $\left(x_{1}, \ldots, x_{8}\right)$ on Y near p such that $\left(z_{1}, \ldots, z_{4}\right)=\left(x_{1}+i x_{2}, x_{3}+i x_{4}, x_{5}+i x_{6}, x_{7}+i x_{8}\right)$. Then from (1) we see that g, ω and $\operatorname{Re}(\theta)$ are given at p by

$$
g=\mathrm{d} x_{1}^{2}+\cdots+\mathrm{d} x_{8}^{2}, \quad \omega=\mathrm{d} \mathbf{x}_{12}+\mathrm{d} \mathbf{x}_{34}+\mathrm{d} \mathbf{x}_{56}+\mathrm{d} \mathbf{x}_{78}
$$

and

$$
\begin{aligned}
\operatorname{Re}(\theta)= & \mathrm{d} \mathbf{x}_{1357}-\mathrm{d} \mathbf{x}_{1368}-\mathrm{d} \mathbf{x}_{1458}-\mathrm{d} \mathbf{x}_{1467} \\
& -\mathrm{d} \mathbf{x}_{2358}-\mathrm{d} \mathbf{x}_{2367}-\mathrm{d} \mathbf{x}_{2457}+\mathrm{d} \mathbf{x}_{2468}
\end{aligned}
$$

where $\mathrm{d} \mathbf{x}_{i j \ldots l}=\mathrm{d} x_{i} \wedge \mathrm{~d} x_{j} \wedge \cdots \wedge \mathrm{~d} x_{l}$.
It follows from this equation that $\Omega=\frac{1}{2} \omega \wedge \omega+\operatorname{Re}(\theta)$ coincides with the 4 -form Ω_{0} defined in (1). As this holds for all $p \in Y$, we see that (Ω, g) is a $\operatorname{Spin}(7)$-structure on Y, in the sense of Definition 2.2. Now $\nabla \omega=\nabla \theta=0$, where ∇ is the Levi-Civita connection of g, and so $\nabla \Omega=0$. But $\nabla \Omega$ is the torsion of (Ω, g), so that (Ω, g) is torsion-free, as we want. q.e.d.

Thus Calabi-Yau 4-folds are also Spin(7)-manifolds.

4. ALE $\operatorname{Spin}(7)$-manifolds

ALE manifolds, or Asymptotically Locally Euclidean manifolds, are a class of noncompact Riemannian manifolds with one end modelled asymptotically on a quotient singularity \mathbb{R}^{n} / G.

Definition 4.1. Let G be a finite subgroup of $\operatorname{SO}(n)$ which acts freely on $\mathbb{R}^{n} \backslash\{0\}$. Let X be a noncompact n-manifold and $\pi: X \rightarrow$ \mathbb{R}^{n} / G a continuous, surjective map, such that $\pi^{-1}(0)$ is a compact subset of X, and $\pi: X \backslash \pi^{-1}(0) \rightarrow\left(\mathbb{R}^{n} / G\right) \backslash\{0\}$ is a diffeomorphism. Then we call (X, π) a real resolution of \mathbb{R}^{n} / G.

A metric g on X is called Asymptotically Locally Euclidean, or ALE, if

$$
\nabla^{l}\left(\pi_{*}(g)-g_{0}\right)=O\left(r^{-n-l}\right) \quad \text { on }\left\{x \in \mathbb{R}^{n} / G: r(x)>R\right\}, \text { for all } l \geq 0
$$

Here g_{0} is the Euclidean metric on $\mathbb{R}^{n} / G, r$ is the radius function on \mathbb{R}^{8} / G, and $R>0$ is a constant. We say that (X, g) is asymptotic to \mathbb{R}^{n} / G.

One reason ALE manifolds are interesting is that if you have an ALE manifold (X, g_{X}) asymptotic to \mathbb{R}^{n} / G, and a compact Riemannian orbifold $\left(Y, g_{Y}\right)$ with isolated singularities modelled on \mathbb{R}^{n} / G, then you can glue X and Y together to get a nonsingular, compact Riemannian manifold $\left(M, g_{M}\right)$. We think of this as resolving the singularities of Y using X.

This technique is particularly valuable when X and Y both have special holonomy, so that $\operatorname{Hol}\left(g_{X}\right)$ and $\operatorname{Hol}\left(g_{Y}\right)$ both lie in some holonomy group $H \subset \operatorname{SO}(n)$, as then we can hope to construct a metric g_{M} on M with $\operatorname{Hol}\left(g_{M}\right) \subseteq H$. So ALE manifolds $\left(X, g_{X}\right)$ with $\operatorname{Hol}\left(g_{X}\right) \subseteq H$ are ingredients in a construction for compact manifolds with holonomy H.

In fact the only interesting candidates for the holonomy group H are $U(m)$ and $\operatorname{SU}(m)$ for $m \geq 2$, and $\operatorname{Spin}(7)$. Kronheimer [16], [17] constructed and classified all ALE 4-manifolds with holonomy $\operatorname{SU}(2)$. Calabi [4, p. 285] found an explicit family of ALE manifolds with holonomy $\operatorname{SU}(m)$ asymptotic to $\mathbb{C}^{m} / \mathbb{Z}_{m}$, and more generally the author [15], [14, Ch. 8] gave existence theorems for ALE manifolds with holonomy $\operatorname{SU}(m)$. No examples of ALE 8-manifolds with holonomy $\operatorname{Spin}(7)$ are known, at the time of writing.

However, we can construct compact 8 -manifolds with holonomy $\operatorname{Spin}(7)$ using only ALE 8 -manifolds whose holonomy is a proper subgroup of $\operatorname{Spin}(7)$ such as $\operatorname{SU}(4)$ or $\mathbb{Z}_{2} \ltimes \mathrm{SU}(4)$, and many examples of these can be found using the results of [15]. To discuss these, it is useful to define the idea of $A L E \operatorname{Spin}(7)$-manifold, as in [14, Ch. 13].

Definition 4.2. Let G be a finite subgroup of $\operatorname{Spin}(7)$ which acts freely on $\mathbb{R}^{8} \backslash\{0\}$, let (X, π) be a real resolution of \mathbb{R}^{8} / G, and (Ω, g) a torsion-free $\operatorname{Spin}(7)$-structure on X. We call (X, Ω, g) an $A L E \operatorname{Spin}(7)$ manifold if

$$
\nabla^{l}\left(\pi_{*}(\Omega)-\Omega_{0}\right)=O\left(r^{-8-l}\right) \quad \text { on }\left\{x \in \mathbb{R}^{8} / G: r(x)>R\right\}, \text { for all } l \geq 0
$$

Here Ω_{0} is the $\operatorname{Spin}(7) 4$-form on \mathbb{R}^{8} / G given in (1), r the radius function on \mathbb{R}^{8} / G, and $R>0$ a constant.

In the rest of the section we give some examples of ALE $\operatorname{Spin}(7)-$ manifolds.

4.1 An example of an ALE Spin(7)-manifold

We define a finite group $G \subset \operatorname{Spin}(7)$, such that \mathbb{R}^{8} / G has an isolated singularity at 0 , and construct two topologically distinct ALE $\operatorname{Spin}(7)-$ manifolds (X_{1}, Ω_{1}, g_{1}) and (X_{2}, Ω_{2}, g_{2}) asymptotic to \mathbb{R}^{8} / G. These will be used in $\S 5$ as part of a construction of compact 8 -manifolds with holonomy $\operatorname{Spin}(7)$.

Let \mathbb{R}^{8} have coordinates $\left(x_{1}, \ldots, x_{8}\right)$ and $\operatorname{Spin}(7)$-structure $\left(\Omega_{0}, g_{0}\right)$, as in Definition 2.1. Use the complex coordinates

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(x_{1}+i x_{2}, x_{3}+i x_{4}, x_{5}+i x_{6}, x_{7}+i x_{8}\right)
$$

to identify \mathbb{R}^{8} with \mathbb{C}^{4}. Then $g_{0}=\left|\mathrm{d} z_{1}\right|^{2}+\cdots+\left|\mathrm{d} z_{4}\right|^{2}$, and $\Omega_{0}=\frac{1}{2} \omega_{0} \wedge$ $\omega_{0}+\operatorname{Re}\left(\theta_{0}\right)$, where ω_{0} is the Kähler form of g_{0} and $\theta_{0}=\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4}$ the complex volume form on \mathbb{C}^{4}.

Define $\alpha, \beta: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ by

$$
\begin{align*}
\alpha:\left(z_{1}, \ldots, z_{4}\right) & \mapsto\left(i z_{1}, i z_{2}, i z_{3}, i z_{4}\right), \\
\beta:\left(z_{1}, \ldots, z_{4}\right) & \mapsto\left(\bar{z}_{2},-\bar{z}_{1}, \bar{z}_{4},-\bar{z}_{3}\right) . \tag{4}
\end{align*}
$$

Then $\alpha \in \operatorname{SU}(4) \subset \operatorname{Spin}(7)$ and $\beta \in \operatorname{Spin}(7)$, and α, β satisfy $\alpha^{4}=$ $\beta^{4}=1, \alpha^{2}=\beta^{2}$ and $\alpha \beta=\beta \alpha^{3}$. Let $G=\langle\alpha, \beta\rangle$. Then G is a finite nonabelian subgroup of $\operatorname{Spin}(7)$ of order 8 which acts freely on $\mathbb{R}^{8} \backslash\{0\}$.

Now $\mathbb{C}^{4} /\langle\alpha\rangle$ is a complex singularity, as $\alpha \in \mathrm{SU}(4)$. Let $\left(Y_{1}, \pi_{1}\right)$ be the blow-up of $\mathbb{C}^{4} /\langle\alpha\rangle$ at 0 . Then Y_{1} is the unique crepant resolution of $\mathbb{C}^{4} /\langle\alpha\rangle$. The action of β on $\mathbb{C}^{4} /\langle\alpha\rangle$ lifts to a free antiholomorphic $\operatorname{map} \beta: Y_{1} \rightarrow Y_{1}$ with $\beta^{2}=1$. Define $X_{1}=Y_{1} /\langle\beta\rangle$. Then X_{1} is a nonsingular 8-manifold, and the projection $\pi_{1}: Y_{1} \rightarrow \mathbb{C}^{4} /\langle\alpha\rangle$ pushes down to $\pi_{1}: X_{1} \rightarrow \mathbb{R}^{8} / G$.

By [15, Th. 3.3, Th. 3.4] there exist ALE Kähler metrics g_{1} on Y_{1} with holonomy $\mathrm{SU}(4)$, which were in fact written down explicitly by Calabi [4, p. 285]. Each such g_{1} is invariant under the action of β on Y_{1}. Let ω_{1} be the Kähler form of g_{1}, and $\theta_{1}=\pi_{1}^{*}\left(\theta_{0}\right)$ the holomorphic volume form on Y_{1}. Then Proposition 3.6 defines a torsion-free $\operatorname{Spin}(7)-$ structure $\left(\Omega_{1}, g_{1}\right)$ on Y_{1} with $\Omega_{1}=\frac{1}{2} \omega_{1} \wedge \omega_{1}+\operatorname{Re}\left(\theta_{1}\right)$.

As $\beta^{*}\left(\omega_{1}\right)=-\omega_{1}$ and $\beta^{*}\left(\theta_{1}\right)=\bar{\theta}_{1}$, we see that β preserves $\left(\Omega_{1}, g_{1}\right)$. Thus $\left(\Omega_{1}, g_{1}\right)$ pushes down to a torsion-free $\operatorname{Spin}(7)$-structure $\left(\Omega_{1}, g_{1}\right)$ on X_{1}. Then $\left(X_{1}, \Omega_{1}, g_{1}\right)$ is an ALE $\operatorname{Spin}(7)$-manifold asymptotic to \mathbb{R}^{8} / G. The Betti numbers of X_{1} are $b^{1}=b^{2}=b^{3}=0$ and $b^{4}=1$, and $\pi_{1}\left(X_{1}\right)=\mathbb{Z}_{2}$.

4.2 A second ALE $\operatorname{Spin}(7)$-manifold asymptotic to \mathbb{R}^{8} / G

Define new complex coordinates $\left(w_{1}, \ldots, w_{4}\right)$ on \mathbb{R}^{8} by

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=\left(-x_{1}+i x_{3}, x_{2}+i x_{4},-x_{5}+i x_{7}, x_{6}+i x_{8}\right) .
$$

Then $g_{0}=\left|\mathrm{d} w_{1}\right|^{2}+\cdots+\left|\mathrm{d} w_{4}\right|^{2}$ and $\Omega_{0}=\frac{1}{2} \omega_{0}^{\prime} \wedge \omega_{0}^{\prime}+\operatorname{Re}\left(\theta_{0}^{\prime}\right)$, where ω_{0}^{\prime} is the Kähler form of g_{0} with respect to the complex structure induced by the w_{j}, and $\theta_{0}^{\prime}=\mathrm{d} w_{1} \wedge \cdots \wedge \mathrm{~d} w_{4}$ is the complex volume form on \mathbb{C}^{4}.

As the action of $\operatorname{SU}(4)$ on $\mathbb{R}^{8}=\mathbb{C}^{4}$ induced by the w_{j} preserves $g_{0}, \omega_{0}^{\prime}$ and θ_{0}^{\prime}, it preserves $\left(\Omega_{0}, g_{0}\right)$. Thus the action of $\operatorname{SU}(4)$ on \mathbb{R}^{8} compatible with the coordinates w_{j} is a subgroup of $\operatorname{Spin}(7)$. Note that this is a different $\mathrm{SU}(4)$ subgroup of $\operatorname{Spin}(7)$ to that considered above, induced by the z_{j}. In the coordinates w_{j}, we find that α, β act by

$$
\begin{align*}
\alpha:\left(w_{1}, \ldots, w_{4}\right) & \mapsto\left(\bar{w}_{2},-\bar{w}_{1}, \bar{w}_{4},-\bar{w}_{3}\right), \\
\beta:\left(w_{1}, \ldots, w_{4}\right) & \mapsto\left(i w_{1}, i w_{2}, i w_{3}, i w_{4}\right) . \tag{5}
\end{align*}
$$

Observe that (4) and (5) are the same, except that the rôles of α, β are reversed. Therefore we can use the ideas above again.

Let Y_{2} be the crepant resolution of $\mathbb{C}^{4} /\langle\beta\rangle$. The action of α on $\mathbb{C}^{4} /\langle\beta\rangle$ lifts to a free antiholomorphic involution of Y_{2}. Let $X_{2}=Y_{2} /\langle\alpha\rangle$. Then X_{2} is nonsingular, and as above there exists a torsion-free $\operatorname{Spin}(7)$ structure (Ω_{2}, g_{2}) on X_{2}, making (X_{2}, Ω_{2}, g_{2}) into an ALE $\operatorname{Spin}(7)$ manifold asymptotic to \mathbb{R}^{8} / G.

Now (X_{1}, Ω_{1}, g_{1}), (X_{2}, Ω_{2}, g_{2}) are clearly isomorphic as Spin(7)-manifolds, but they should be regarded as topologically distinct ALE manifolds, because the isomorphism between them acts nontrivially on \mathbb{R}^{8} / G. Thus, we have found two topologically distinct ALE Spin(7)-manifolds $\left(X_{1}, \Omega_{1}, g_{1}\right),\left(X_{2}, \Omega_{2}, g_{2}\right)$ asymptotic to the same singularity \mathbb{R}^{8} / G.

4.3 Other examples of ALE Spin(7)-manifolds

We can use the ideas above to construct other ALE Spin(7)-manifolds too. Here we very briefly describe two infinite families of ALE $\operatorname{Spin}(7)-$ manifolds X_{1}^{n}, X_{2}^{n} for $n=1,3,5, \ldots$. For simplicity they will not be used in the rest of the paper, although they easily could be.

Identify \mathbb{R}^{8} and \mathbb{C}^{4} as in $\S 4.1$. Let $n \geq 1$ be an odd integer, and define $\alpha, \beta, \gamma: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ by

$$
\begin{aligned}
& \alpha:\left(z_{1}, \ldots, z_{4}\right) \mapsto\left(\mathrm{e}^{2 \pi i / n} z_{1}, \mathrm{e}^{-2 \pi i / n} z_{2}, \mathrm{e}^{2 \pi i / n} z_{3}, \mathrm{e}^{-2 \pi i / n} z_{4}\right), \\
& \beta:\left(z_{1}, \ldots, z_{4}\right) \mapsto\left(i z_{1}, i z_{2}, i z_{3}, i z_{4}\right), \\
& \gamma:\left(z_{1}, \ldots, z_{4}\right) \mapsto\left(\bar{z}_{2},-\bar{z}_{1}, \bar{z}_{4},-\bar{z}_{3}\right) .
\end{aligned}
$$

Then $\alpha, \beta \in \operatorname{SU}(4)$ and $\gamma \in \operatorname{Spin}(7)$, and $G^{n}=\langle\alpha, \beta, \gamma\rangle$ is a finite nonabelian subgroup of $\operatorname{Spin}(7)$ of order $8 n$ which acts freely on $\mathbb{R}^{8} \backslash\{0\}$. Note that G^{1} coincides with the group G of $\S 4.1$-§4.2.

We can construct a family of ALE $\operatorname{Spin}(7)$-manifolds asymptotic to \mathbb{R}^{8} / G^{n} as follows. The complex singularity $\mathbb{C}^{4} /\langle\alpha, \beta\rangle$ has a unique crepant resolution Y_{1}^{n}, which can be described explicitly using toric geometry. The action of γ on $\mathbb{C}^{4} /\langle\alpha, \beta\rangle$ lifts to a free antiholomorphic involution $\gamma: Y_{1}^{n} \rightarrow Y_{1}^{n}$, so that $X_{1}^{n}=Y_{1}^{n} /\langle\gamma\rangle$ is a nonsingular 8manifold with a projection $\pi_{1}^{n}: X_{1}^{n} \rightarrow \mathbb{R}^{8} / G^{n}$.

By the results of [15], there exist ALE Kähler metrics g_{1}^{n} on Y_{1}^{n} with holonomy $\operatorname{SU}(4)$. We can choose g_{1}^{n} to be γ-invariant, and then the induced $\operatorname{Spin}(7)$-structure $\left(\Omega_{1}^{n}, g_{1}^{n}\right)$ on Y_{1}^{n} is also γ-invariant, and pushes down to X_{1}^{n}, making ($X_{1}^{n}, \Omega_{1}^{n}, g_{1}^{n}$) into an ALE $\operatorname{Spin}(7)$-manifold asymptotic to \mathbb{R}^{8} / G^{n}. Using the idea of $\S 4.2$, we can also construct a second ALE $\operatorname{Spin}(7)$-manifold ($X_{2}^{n}, \Omega_{2}^{n}, g_{2}^{n}$) asymptotic to \mathbb{R}^{8} / G^{n}.

5. Proof of the construction

Starting with a Calabi-Yau 4-orbifold Y with isolated singularities of a certain kind, and an antiholomorphic involution σ on Y, we will now construct a compact 8 -manifold M by resolving $Z=Y /\langle\sigma\rangle$, and prove that there exist torsion-free $\operatorname{Spin}(7)$-structures (Ω, \tilde{g}) on M, which have holonomy $\operatorname{Spin}(7)$ if M is simply-connected.

5.1 A class of $\operatorname{Spin}(7)$-orbifolds Z

We set out below the ingredients in our construction, and the assumptions they must satisfy.

Condition 5.1. Let (Y, J) be a compact complex 4 -orbifold with $c_{1}(Y)=0$, admitting Kähler metrics. Let σ be an antiholomorphic involution on Y. That is, $\sigma: Y \rightarrow Y$ is a diffeomorphism satisfying $\sigma^{2}=\mathrm{id}$ and $\sigma^{*}(J)=-J$. Define $\alpha: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ by

$$
\begin{equation*}
\alpha:\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \longmapsto\left(i z_{1}, i z_{2}, i z_{3}, i z_{4}\right) . \tag{6}
\end{equation*}
$$

Then $\alpha^{4}=1$, so that $\langle\alpha\rangle \cong \mathbb{Z}_{4}$, and $\mathbb{C}^{4} /\langle\alpha\rangle$ has an isolated singular point at 0 . We require that the singular set of Y should be k isolated points p_{1}, \ldots, p_{k} for some $k \geq 1$, each modelled on $\mathbb{C}^{4} /\langle\alpha\rangle$, and that the fixed set of σ in Y is exactly $\left\{p_{1}, \ldots, p_{k}\right\}$. We also suppose that $Y \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ is simply-connected, and $h^{2,0}(Y)=0$.

In the rest of the section we assume that Condition 5.1 holds.
Proposition 5.2. There is a σ-invariant metric g_{Y} on Y making $\left(Y, J, g_{Y}\right)$ into a Calabi-Yau orbifold. We can choose the holomorphic volume form θ_{Y} on $\left(Y, J, g_{Y}\right)$ such that $\sigma^{*}\left(\theta_{Y}\right)=\bar{\theta}_{Y}$. Let $\left(\Omega_{Y}, g_{Y}\right)$ be the torsion-free $\operatorname{Spin}(7)$-structure on Y from Proposition 3.6. Then $\left(\Omega_{Y}, g_{Y}\right)$ is σ-invariant.

Proof. Let g^{\prime} be a Kähler metric on Y. Then $\sigma^{*}\left(g^{\prime}\right)$ is also a Kähler metric on Y, and so $g^{\prime \prime}=g^{\prime}+\sigma^{*}\left(g^{\prime}\right)$ is a σ-invariant Kähler metric on Y. Let κ be the Kähler class of $g^{\prime \prime}$. Then κ is σ-invariant, regarded as an equivalence class of metrics on Y. By Condition 5.1 we know that $c_{1}(Y)=0$ and $h^{2,0}(Y)=0$, and that $Y \backslash S$ is simply-connected, where $S=\left\{p_{1}, \ldots, p_{k}\right\}$ is the singular set of Y. Thus by Proposition 3.5, the Kähler class κ contains a unique metric g_{Y} such that $\left(Y, J, g_{Y}\right)$ is a Calabi-Yau orbifold. As κ is σ-invariant we see that g_{Y} is σ-invariant, by uniqueness of g_{Y}.

Proposition 3.4 shows that there exists a holomorphic volume form θ on Y. Since σ is antiholomorphic, it is easy to show that $\sigma^{*}(\theta)=\mathrm{e}^{i \phi} \bar{\theta}$, for some $\phi \in[0,2 \pi)$. Define $\theta_{Y}=\mathrm{e}^{i \phi / 2} \theta$. Then θ_{Y} is a holomorphic volume form for $\left(Y, J, g_{Y}\right)$, and $\sigma^{*}\left(\theta_{Y}\right)=\bar{\theta}_{Y}$, as we want.

Let $\left(\Omega_{Y}, g_{Y}\right)$ be as in Proposition 3.6. Then $\Omega_{Y}=\frac{1}{2} \omega_{Y} \wedge \omega_{Y}+\operatorname{Re}\left(\theta_{Y}\right)$, where ω_{Y} is the Kähler form of g_{Y}. As $\sigma^{*}\left(g_{Y}\right)=g_{Y}$ and $\sigma^{*}(J)=-J$ we have $\sigma^{*}\left(\omega_{Y}\right)=-\omega_{Y}$, and $\sigma^{*}\left(\operatorname{Re}\left(\theta_{Y}\right)\right)=\operatorname{Re}\left(\theta_{Y}\right)$ as $\sigma^{*}\left(\theta_{Y}\right)=\bar{\theta}_{Y}$. Thus Ω_{Y} and g_{Y} are both σ-invariant. q.e.d.

In our next result, if Y is an orbifold and $p \in Y$ an orbifold point modelled on \mathbb{R}^{n} / G, then we say that the tangent space $T_{p} Y$ to Y at p is \mathbb{R}^{n} / G, in the obvious way. The proof looks complicated, but it is really only linear algebra.

Proposition 5.3. For each $j=1, \ldots, k$ we can identify the tangent space $T_{p_{j}} Y$ to Y at p_{j} with $\mathbb{C}^{4} /\langle\alpha\rangle$ so that g_{Y} is identified with $\left|\mathrm{d} z_{1}\right|^{2}+$ $\cdots+\left|\mathrm{d} z_{4}\right|^{2}$ at p_{j}, θ_{Y} is identified with $\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4}$ at p_{j}, and $\mathrm{d} \sigma$: $T_{p_{j}} Y \rightarrow T_{p_{j}} Y$ is identified with the map $\beta: \mathbb{C}^{4} /\langle\alpha\rangle \rightarrow \mathbb{C}^{4} /\langle\alpha\rangle$ given by

$$
\begin{equation*}
\beta:\left(z_{1}, \ldots, z_{4}\right)\langle\alpha\rangle \longmapsto\left(\bar{z}_{2},-\bar{z}_{1}, \bar{z}_{4},-\bar{z}_{3}\right)\langle\alpha\rangle . \tag{7}
\end{equation*}
$$

Proof. Since J, g_{Y} and θ_{Y} form a Calabi-Yau structure on Y, there certainly exists an isomorphism $\iota: T_{p_{j}} Y \rightarrow \mathbb{C}^{4} /\langle\alpha\rangle$ which identifies g_{Y} with $\left|\mathrm{d} z_{1}\right|^{2}+\cdots+\left|\mathrm{d} z_{4}\right|^{2}$ and θ_{Y} with $\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4}$. This ι is unique up to the action of $\operatorname{SU}(4)$ on $\mathbb{C}^{4} /\langle\alpha\rangle$. That is, if $B \in \operatorname{SU}(4)$, then
$B \circ \iota: T_{p_{j}} Y \rightarrow \mathbb{C}^{4} /\langle\alpha\rangle$ also identifies g_{Y} with $\left|\mathrm{d} z_{1}\right|^{2}+\cdots+\left|\mathrm{d} z_{4}\right|^{2}$ and θ_{Y} with $\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4}$.

Now $\mathrm{d} \sigma: T_{p_{j}} Y \rightarrow T_{p_{j}} Y$ is complex antilinear, and so ι identifies $\mathrm{d} \sigma$ with the map $\gamma: \mathbb{C}^{4} /\langle\alpha\rangle \rightarrow \mathbb{C}^{4} /\langle\alpha\rangle$ given by

$$
\gamma:\left\{i^{k}\left(\begin{array}{l}
z_{1} \tag{8}\\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right): k=0,1,2,3\right\} \longmapsto\left\{i^{k} A\left(\begin{array}{c}
\bar{z}_{1} \\
\bar{z}_{2} \\
\bar{z}_{3} \\
\bar{z}_{4}
\end{array}\right): k=0,1,2,3\right\}
$$

for some 4×4 complex matrix A. In fact A is only defined up to multiplication by a power of i.

As $\mathrm{d} \sigma$ preserves g_{Y} and takes θ_{Y} to $\bar{\theta}_{Y}$ on $T_{p_{j}} Y$, it follows that γ preserves $\left|\mathrm{d} z_{1}\right|^{2}+\cdots+\left|\mathrm{d} z_{4}\right|^{2}$ and takes $\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4}$ to $\mathrm{d} \bar{z}_{1} \wedge \cdots \wedge \mathrm{~d} \bar{z}_{4}$ on $\mathbb{C}^{4} /\langle\alpha\rangle$. These imply that $A \bar{A}^{t}=I$ and $\operatorname{det}(A)=1$, and so $A \in \mathrm{SU}(4)$. Also, $\gamma^{2}=I$ as $\sigma^{2}=\mathrm{id}$, and this implies that $A \bar{A}=i^{k} I$ for $k=0,1,2$ or 3 . And because σ fixes only p_{1}, \ldots, p_{k} in Y, the only fixed point of γ in $\mathbb{C}^{4} /\langle\alpha\rangle$ is 0.

So A lies in $\mathrm{SU}(4)$ and satisfies $A \bar{A}=i^{k} I$. When we replace ι by $B \circ \iota$ for $B \in \mathrm{SU}(4)$, the matrix A is replaced by $B A B^{t}$. We wish to show that we can choose $B \in \mathrm{SU}(4)$ such that the maps β of (7) and γ of (8) coincide. That is, we must show that there exists $B \in \mathrm{SU}(4)$ and $l=0,1,2$ or 3 such that

$$
i^{l} B A B^{t}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{9}\\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Now $A \bar{A}=i^{k} I$ shows that A and \bar{A} commute, and so $A \bar{A}=\bar{A} A=$ $\overline{A \bar{A}}$. Thus $i^{k} I$ is a real matrix, which implies that $k=0$ or 2 , and $A \bar{A}= \pm I$. By studying the eigenvectors of A, one can prove that there exists $B \in \mathrm{SU}(4)$ such that $B A B^{t}$ is one of

$$
I,-I,\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), i\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) .
$$

We exclude the first three possibilities because γ fixes $(1,0,0,0)\langle\alpha\rangle$ in $\mathbb{C}^{4} /\langle\alpha\rangle$, contradicting the fact that the only fixed point of γ in $\mathbb{C}^{4} /\langle\alpha\rangle$ is 0 . Putting $l=0$ in the fourth case and $l=3$ in the fifth, we see that
(9) holds. Thus $B \circ \iota$ identifies $T_{p_{j}} Y$ with $\mathbb{C}^{4} /\langle\alpha\rangle$ and satisfies all the conditions of the proposition, and the proof is complete. q.e.d.

Now $\S 4.1$ defined a finite group $G=\langle\alpha, \beta\rangle$ acting on \mathbb{R}^{8}, and the definitions (6) and (7) of α and β above coincide with (4) in $\S 4.1$. Thus the singularities of $Z=Y /\langle\sigma\rangle$ are all modelled on \mathbb{R}^{8} / G, and we easily prove:

Corollary 5.4. Define $Z=Y /\langle\sigma\rangle$. Then Z is a compact, real 8dimensional orbifold. The $\operatorname{Spin}(7)$-structure $\left(\Omega_{Y}, g_{Y}\right)$ on Y pushes down to give a torsion-free $\operatorname{Spin}(7)$-structure $\left(\Omega_{Z}, g_{Z}\right)$ on Z. The singularities of Z are k points p_{1}, \ldots, p_{k}. For each $j=1, \ldots, k$ there is an isomorphism $\iota_{j}: \mathbb{R}^{8} / G \rightarrow T_{p_{j}} Z$ which identifies the $\operatorname{Spin}(7)$-structures $\left(\Omega_{0}, g_{0}\right)$ on \mathbb{R}^{8} / G and $\left(\Omega_{Z}, g_{Z}\right)$ on $T_{p_{j}} Z$. Here G and $\left(\Omega_{0}, g_{0}\right)$ are defined in §4.1.

5.2 Desingularizing Z to get a compact 8-manifold M

So far we have constructed a $\operatorname{Spin}(7)$-orbifold $\left(Z, \Omega_{Z}, g_{Z}\right)$ with finitely many singular points p_{1}, \ldots, p_{k}, each modelled on the singularity \mathbb{R}^{8} / G of $\S 4.1$. But in $\S 4.1$ and $\S 4.2$ we wrote down two ALE $\operatorname{Spin}(7)$-manifolds X_{1} and X_{2} asymptotic to \mathbb{R}^{8} / G. We shall now resolve each singular point p_{j} in Z using either X_{1} or X_{2} to get a compact 8-manifold M. We include a parameter $t \in(0,1]$ in the construction.

Definition 5.5. For each j let ι_{j} be as in Corollary 5.4, and let $\exp _{p_{j}}: T_{p_{j}} Z \rightarrow Z$ be the exponential map, which is well-defined as Z is complete. Then $\exp _{p_{j}} \circ \iota_{j}$ maps \mathbb{R}^{8} / G to Z. Choose $\zeta>0$ small, and let $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$ be the open ball of radius 2ζ about 0 in \mathbb{R}^{8} / G. Define $U_{j} \subset Z$ by $U_{j}=\exp _{p_{j}} \circ \iota_{j}\left(B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)\right)$, and $\psi_{j}: B_{2 \zeta}\left(\mathbb{R}^{8} / G\right) \rightarrow U_{j}$ by $\psi_{j}=\exp _{p_{j}} \circ \iota_{j}$. Let $\zeta>0$ be chosen small enough that U_{j} is open in Z and $\psi_{j}: B_{2 \zeta}\left(\mathbb{R}^{8} / G\right) \rightarrow U_{j}$ is a diffeomorphism for $1 \leq j \leq k$, and that $U_{i} \cap U_{j}=\emptyset$ when $i \neq j$.

Proposition 5.6. There is a smooth 3 -form σ_{j} on $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$ for $1 \leq j \leq k$ and a constant $C_{1}>0$, such that $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}=\mathrm{d} \sigma_{j}$ and $\left|\nabla^{l} \sigma_{j}\right| \leq C_{1} r^{3-l}$ on $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$, for $l=0,1,2$. Here $|$.$| and \nabla$ are defined using the metric g_{0} on $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$, and $r: B_{2 \zeta}\left(\mathbb{R}^{8} / G\right) \rightarrow[0,2 \zeta)$ is the radius function.

Proof. The derivative of $\exp _{p_{j}}$ at 0 is the identity map on $T_{p_{j}} Z$. Thus the derivative of ψ_{j} at 0 is $\iota_{j}: \mathbb{R}^{8} / G \rightarrow T_{p_{j}} Z$, and so $\left.\psi_{j}^{*}\left(\Omega_{Z}\right)\right|_{0}=$ $\iota_{j}^{*}\left(\Omega_{Z}\right)=\left.\Omega_{0}\right|_{0}$, since ι_{j} identifies Ω_{0} and Ω_{Z}. Therefore $\psi_{j}^{*}\left(\Omega_{Z}\right)=\Omega_{0}$ at

0 in $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$. As $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}$ is a 4 -form on a subset of \mathbb{R}^{8} / G, we can pull it back to \mathbb{R}^{8}, and regard $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}$ as a 4-form on the ball $B_{2 \zeta}\left(\mathbb{R}^{8}\right)$ of radius 2ζ in \mathbb{R}^{8}.

Then $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}$ is a smooth G-invariant 4-form on $B_{2 \zeta}\left(\mathbb{R}^{8}\right)$ which vanishes at 0 . But G contains $-1: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}$, and any 4 -form invariant under this map -1 has zero first derivative at 0 . Hence $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}$ vanishes to first order at 0 in $B_{2 \zeta}\left(\mathbb{R}^{8}\right)$, and so by Taylor's Theorem we can show that $\left|\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}\right|=O\left(r^{2}\right)$ and $\left|\nabla \psi_{j}^{*}\left(\Omega_{Z}\right)\right|=O(r)$ on $B_{2 \zeta}\left(\mathbb{R}^{8}\right)$.

Now Ω_{Z} and Ω_{0} are closed, so that $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}$ is closed, and as $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$ is contractible we can write $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}=\mathrm{d} \sigma_{j}$ for some smooth 3 -form σ_{j} on $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$. Since $\psi_{j}^{*}\left(\Omega_{Z}\right)-\Omega_{0}$ vanishes to first order at 0 we can easily arrange that σ_{j} vanishes to second order at 0 , and therefore $\left|\nabla^{l} \sigma_{j}\right|=O\left(r^{3-l}\right)$ for $l=0,1,2$, using Taylor's Theorem as above. Thus there exists $C_{1}>0$ such that $\left|\nabla^{l} \sigma_{j}\right| \leq C_{1} r^{3-l}$ on $B_{2 \zeta}\left(\mathbb{R}^{8} / G\right)$, for $l=0,1,2$ and $j=1, \ldots, k$. q.e.d.

Definition 5.7. Let the ALE $\operatorname{Spin}(7)$-manifolds $\left(X_{n}, \Omega_{n}, g_{n}\right)$ and projections $\pi_{n}: X_{n} \rightarrow \mathbb{R}^{8} / G$ be as in $\S 4.1$ and $\S 4.2$ for $n=1,2$. For each $t \in(0,1]$ and $n=1,2$ let $X_{n}^{t}=X_{n}$, define a $\operatorname{Spin}(7)$-structure $\left(\Omega_{n}^{t}, g_{n}^{t}\right)$ on X_{n}^{t} by $\Omega_{n}^{t}=t^{4} \Omega_{n}$ and $g_{n}^{t}=t^{2} g_{n}$, and define $\pi_{n}^{t}: X_{n}^{t} \rightarrow \mathbb{R}^{8} / G$ by $\pi_{n}^{t}=t \pi_{n}$. Then $\left(X_{n}^{t}, \Omega_{n}^{t}, g_{n}^{t}\right)$ is an ALE Spin(7)-manifold asymptotic to \mathbb{R}^{8} / G.

Using the ideas of [15] or the explicit formula of Calabi [4, p. 285] we can show that there exist $C_{2}>0$ and a smooth 3 -form τ_{n}^{t} on $\mathbb{R}^{8} / G \backslash B_{t \zeta}\left(\mathbb{R}^{8} / G\right)$, satisfying

$$
\begin{equation*}
\left(\pi_{n}^{t}\right)_{*}\left(\Omega_{n}^{t}\right)=\Omega_{0}+\mathrm{d} \tau_{n}^{t} \quad \text { and } \quad\left|\nabla^{l} \tau_{n}^{t}\right| \leq C_{2} t^{8} r^{-7-l} \quad \text { for } l=0,1,2 \tag{10}
\end{equation*}
$$ on $\mathbb{R}^{8} / G \backslash B_{t \zeta}\left(\mathbb{R}^{8} / G\right)$, where $|$.$| and \nabla$ are defined using the metric g_{0}.

For $j=1, \ldots, k$, choose n_{j} to be 1 or 2 . There are 2^{k} ways of defining the n_{j}. We shall resolve each singular point p_{j} in Z using $X_{n_{j}}^{t}$ to get a 1-parameter family of resolutions $\left(M^{t}, \pi^{t}\right)$ of Z.

Definition 5.8. For each $j=1, \ldots, k$, define open subsets M_{0}^{t} in Z and M_{j}^{t} in $X_{n_{j}}^{t}$ for $1 \leq j \leq k$ by

$$
M_{0}^{t}=Z \backslash \bigcup_{j=1}^{k} \psi_{j}\left(\bar{B}_{t^{4 / 5} \zeta}\left(\mathbb{R}^{8} / G\right)\right) \quad \text { and } \quad M_{j}^{t}=\left(\pi_{n_{j}}^{t}\right)^{-1}\left(B_{2 t^{4 / 5} \zeta}\left(\mathbb{R}^{8} / G\right)\right)
$$

That is, M_{0}^{t} is the complement in Z of the closed balls of radius $t^{4 / 5} \zeta$ about p_{j} for $1 \leq j \leq k$, and M_{j}^{t} is the inverse image of $B_{2 t^{4 / 5}}\left(\mathbb{R}^{8} / G\right)$ in $X_{n_{j}}^{t}$.

Define an equivalence relation ' \sim ' on the disjoint union $\coprod_{j=0}^{k} M_{j}^{t}$ by $x \sim y$ if either (a) $x=y$,
(b) $x \in M_{j}^{t}$ and $y \in U_{j} \cap M_{0}^{t}$ and $\psi_{j} \circ \pi_{n_{j}}^{t}(x)=y$, for some $j=1, \ldots, k$, or
(c) $y \in M_{j}^{t}$ and $x \in U_{j} \cap M_{0}^{t}$ and $\psi_{j} \circ \pi_{n_{j}}^{t}(y)=x$, for some $j=1, \ldots, k$.

Define the resolution M^{t} of Z to be $\coprod_{j=0}^{k} M_{j}^{t} / \sim$. It is easy to see that M^{t} is a compact 8 -manifold. Define a projection $\pi^{t}: M^{t} \rightarrow$ Z by $\pi^{t}([x])=x$ when $x \in M_{0}^{t}$, and $\pi^{t}([x])=\psi_{j} \circ \pi_{n_{j}}^{t}(x)$ when $x \in M_{j}^{t}$ for some $j=1, \ldots, k$, where $[x]$ is the equivalence class of x under \sim. Then π^{t} is well-defined, continuous and surjective, and $\pi^{t}: M^{t} \backslash \bigcup_{j=1}^{k}\left(\pi^{t}\right)^{-1}\left(p_{j}\right) \rightarrow Z \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ is a diffeomorphism.

Since the resolutions (M^{t}, π^{t}) of Z form a smooth connected family, they are all diffeomorphic to the same compact 8 -manifold M. We can regard M_{j}^{t} as an open subset of M^{t} for $j=0, \ldots, k$, and then the M_{j}^{t} form an open cover of M^{t}. If $1 \leq i, j \leq k$ and $i \neq j$ then $M_{i}^{t} \cap M_{j}^{t}=\emptyset$. The overlap $M_{0}^{t} \cap M_{j}^{t}$ is naturally isomorphic to an annulus in \mathbb{R}^{8} / G, with inner radius $t^{4 / 5} \zeta$ and outer radius $2 t^{4 / 5} \zeta$. The reason for including the factors $t^{4 / 5}$ will be explained shortly.

We now calculate the fundamental group of M^{t}.
Proposition 5.9. If $n_{j}=1$ for $j=1, \ldots, k$ then $\pi_{1}\left(M^{t}\right) \cong \mathbb{Z}_{2}$. Otherwise, M^{t} is simply-connected.

Proof. Since $Y \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ is simply-connected by Condition 5.1 and σ acts freely on $Y \backslash\left\{p_{1}, \ldots, p_{k}\right\}$, we see that the fundamental group of $Z \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ is \mathbb{Z}_{2}. The natural inclusion of $Z \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ in M^{t} induces a homomorphism from $\pi_{1}\left(Z \backslash\left\{p_{1}, \ldots, p_{k}\right\}\right)$ to $\pi_{1}\left(M^{t}\right)$, which is easily shown to be surjective. Also, as $X_{n_{j}}^{t}$ is X_{1} or X_{2} we have $\pi_{1}\left(X_{n_{j}}^{t}\right) \cong \mathbb{Z}_{2}$.

Therefore, $\pi_{1}\left(M_{t}\right)$ is \mathbb{Z}_{2} if the generator of $\pi_{1}\left(Z \backslash\left\{p_{1}, \ldots, p_{k}\right\}\right)$ projects to the nonzero element of $\pi_{1}\left(X_{n_{j}}^{t}\right)$ for all $1 \leq j \leq k$, and $\pi_{1}\left(M^{t}\right)$ is trivial otherwise. But calculation shows that the generator of $\pi_{1}\left(Z \backslash\left\{p_{1}, \ldots, p_{k}\right\}\right)$ is nonzero in $\pi_{1}\left(X_{n_{j}}^{t}\right)$ if and only if $n_{j}=1$. q.e.d.

This shows that of the 2^{k} possible ways of choosing the n_{j}, one possibility gives $\pi_{1}\left(M^{t}\right)=\mathbb{Z}_{2}$, and the remaining $2^{k}-1$ possibilities all
give simply-connected M^{t}.

5.3 A $\operatorname{Spin}(7)$-structure $\left(\Omega^{t}, g^{t}\right)$ on M^{t} with small torsion

Each open subset M_{j}^{t} in M^{t} carries a torsion-free $\operatorname{Spin}(7)$-structure, $\left(\Omega_{Z}, g_{Z}\right)$ for $j=0$ and $\left(\Omega_{n_{j}}^{t}, g_{n_{j}}^{t}\right)$ for $1 \leq j \leq k$. We shall join these $\operatorname{Spin}(7)$-structures together with a partition of unity to get a $\operatorname{Spin}(7)-$ structure (Ω^{t}, g^{t}) on M^{t} and estimate its torsion.

Definition 5.10. Let $\eta:[0, \infty) \rightarrow[0,1]$ be a smooth function with $\eta(x)=0$ for $x \leq \zeta$ and $\eta(x)=1$ for $x \geq 2 \zeta$. Define a 4 -form ξ^{t} on M^{t} by $\xi^{t}=\Omega_{Z}$ in $M_{0}^{t} \backslash \bigcup_{j=1}^{k} M_{j}^{t}$, and $\xi^{t}=\Omega_{n_{j}}^{t}$ in $M_{j}^{t} \backslash M_{0}^{t}$ for $1 \leq j \leq k$, and

$$
\begin{equation*}
\xi^{t}=\Omega_{0}+\mathrm{d}\left(\eta\left(t^{-4 / 5} r\right) \sigma_{j}\right)+\mathrm{d}\left(\left(1-\eta\left(t^{-4 / 5} r\right)\right) \tau_{n_{j}}^{t}\right) \quad \text { in } M_{0}^{t} \cap M_{j}^{t} \tag{11}
\end{equation*}
$$

for $1 \leq j \leq k$, where we identify $M_{0}^{t} \cap M_{j}^{t}$ with an annulus in \mathbb{R}^{8} / G in the natural way. Since $\Omega_{Z}=\Omega_{0}+\mathrm{d} \sigma_{j}$ and $\Omega_{n_{j}}^{t}=\Omega_{0}+\mathrm{d} \tau_{n_{j}}^{t}$ in $M_{0}^{t} \cap M_{j}^{t}$, it follows that ξ^{t} is smooth, and as $\Omega_{Z}, \Omega_{n_{j}}^{t}$ and Ω_{0} are closed, ξ^{t} is closed.

Lemma 5.11. There exists $C_{3}>0$ such that for each $j=1, \ldots, k$ and $t \in(0,1]$, this 4 -form ξ^{t} satisfies

$$
\begin{equation*}
\left|\xi^{t}-\Omega_{0}\right| \leq C_{3} t^{8 / 5} \quad \text { and } \quad\left|\nabla\left(\xi^{t}-\Omega_{0}\right)\right| \leq C_{3} t^{4 / 5} \tag{12}
\end{equation*}
$$

in $M_{0}^{t} \cap M_{j}^{t}$, where $|$.$| and \nabla$ are defined using the metric g_{0}.
Proof. Expanding (11) we find that

$$
\begin{aligned}
\xi^{t}-\Omega_{0}= & \eta\left(t^{-4 / 5} r\right) \mathrm{d} \sigma_{j}+\left(1-\eta\left(t^{-4 / 5} r\right)\right) \mathrm{d} \tau_{n_{j}}^{t} \\
& +t^{-4 / 5} \eta^{\prime}\left(t^{-4 / 5} r\right) \mathrm{d} r \wedge\left(\sigma_{j}-\tau_{n_{j}}^{t}\right)
\end{aligned}
$$

in $M_{0}^{t} \cap M_{j}^{t}$. Since $t^{4 / 5} \zeta \leq r \leq 2 t^{4 / 5} \zeta$, Proposition 5.6 and (10) show that

$$
\begin{aligned}
\mid \sigma_{j} & \leq 8 C_{1} \zeta^{3} t^{12 / 5}, & & \left|\mathrm{~d} \sigma_{j}\right| & \leq 4 C_{1} \zeta^{2} t^{8 / 5}, & \\
\left|\tau_{n_{j}}^{t}\right| & \leq C_{2} \zeta^{-7} t^{12 / 5}, & \left|\mathrm{~d} \tau_{n_{j}}^{t}\right| & \leq C_{2} \mid \leq 2 C_{1} \zeta t^{4 / 5} t^{8 / 5} & \text { and } & \left|\nabla \mathrm{d} \tau_{n_{j}}^{t}\right|
\end{aligned} \leq C_{2} \zeta^{-9} t^{4 / 5} .
$$

Combining these with the previous equation and using the facts that $|\mathrm{d} r|=1$ and η^{\prime} is bounded independently of t, we soon prove (12).
q.e.d.

We can now explain why we chose the power $t^{4 / 5}$ in Definition 5.8. Suppose we had defined M^{t} and ξ^{t} using t^{α} in place of $t^{4 / 5}$, for some $\alpha \in[0,1]$. Then in the calculation above the σ_{j} and $\tau_{n_{j}}^{t}$ terms would contribute $O\left(t^{2 \alpha}\right)$ and $O\left(t^{8-8 \alpha}\right)$ to $\xi^{t}-\Omega_{0}$ respectively, and so $\xi^{t}-\Omega_{0}$ would be $O\left(t^{2 \alpha}\right)+O\left(t^{8-8 \alpha}\right)$. This is smallest when $2 \alpha=8-8 \alpha$, that is, when $\alpha=4 / 5$. So the power $t^{4 / 5}$ minimizes the size of $\xi^{t}-\Omega_{0}$.

Now we can define the $\operatorname{Spin}(7)$-structures $\left(\Omega^{t}, g^{t}\right)$ on M^{t}.
Definition 5.12. Let ρ be as in Proposition 2.5, and choose $\epsilon \in(0,1]$ such that $C_{3} \epsilon^{8 / 5} \leq \rho$. Suppose $t \in(0, \epsilon]$. Then

$$
\left|\xi^{t}-\Omega_{0}\right| \leq C_{3} t^{8 / 5} \leq \rho
$$

in $M_{0}^{t} \cap M_{j}^{t}$ for $1 \leq j \leq k$ by (12), and so ξ^{t} lies in $\mathcal{T} M^{t}$ on $M_{0}^{t} \cap M_{j}^{t}$ by part (i) of Proposition 2.5. But ξ^{t} is Ω_{Z} or $\Omega_{n_{j}}^{t}$ outside the overlaps $M_{0}^{t} \cap M_{j}^{t}$, and thus $\xi^{t} \in C^{\infty}\left(\mathcal{T} M^{t}\right)$. For each $t \in(0, \epsilon]$ define $\Omega^{t}=\Theta\left(\xi^{t}\right)$, where Θ is given in Proposition 2.5. Then $\Omega^{t} \in C^{\infty}\left(\mathcal{A} M^{t}\right)$, and so Ω^{t} extends to a $\operatorname{Spin}(7)$-structure $\left(\Omega^{t}, g^{t}\right)$ on M^{t}. Define a 4 -form ϕ^{t} on M^{t} by $\phi^{t}=\xi^{t}-\Omega^{t}$. Then $\mathrm{d} \Omega^{t}+\mathrm{d} \phi^{t}=0$, as $\mathrm{d} \xi^{t}=0$ on M^{t}.

Here ξ^{t} is a 4-form which does not lie in $\mathcal{A} M^{t}$, but is close to $\mathcal{A} M^{t}$ for small t, and Ω^{t} is the section of $\mathcal{A} M^{t}$ closest to ξ^{t}. What is really happening is that the $\operatorname{Spin}(7)$-structure $\left(\Omega^{t}, g^{t}\right)$ is equal to $\left(\Omega_{n_{j}}^{t}, g_{n_{j}}^{t}\right)$ in $M_{j}^{t} \backslash M_{0}^{t}$ and to $\left(\Omega_{Z}, g_{Z}\right)$ outside M_{j}^{t} for $j=1, \ldots, k$, and $\left(\Omega^{t}, g^{t}\right)$ interpolates smoothly between these two possibilities on the annulus $M_{j}^{t} \cap M_{0}^{t}$.

5.4 Existence of torsion-free Spin(7)-structures on M

Next we shall show that $\left(\Omega^{t}, g^{t}\right)$ can be deformed to a torsion-free $\operatorname{Spin}(7)$-structure on M when t is small.

Theorem 5.13. In the situation above, there exist constants $\lambda, \mu, \nu>$ 0 such that for all $t \in(0, \epsilon]$ we have
(i) $\left\|\phi^{t}\right\|_{L^{2}} \leq \lambda t^{24 / 5}$ and $\left\|\mathrm{d} \phi^{t}\right\|_{L^{10}} \leq \lambda t^{36 / 25}$;
(ii) the injectivity radius $\delta\left(g^{t}\right)$ satisfies $\delta\left(g^{t}\right) \geq \mu t$; and
(ii) the Riemann curvature $R\left(g^{t}\right)$ satisfies $\left\|R\left(g^{t}\right)\right\|_{C^{0}} \leq \nu t^{-2}$.

Here all norms are calculated using the metric g^{t} on M^{t}.
Proof. Outside the overlaps $M_{0}^{t} \cap M_{j}^{t}$ for $1 \leq j \leq k$ we either have $\xi^{t}=\Omega^{t}=\Omega_{Z}$ or $\xi^{t}=\Omega^{t}=\Omega_{n_{j}}^{t}$. In both cases $\phi^{t}=\xi^{t}-\Omega^{t}=0$, and
so ϕ^{t} is zero outside the $M_{0}^{t} \cap M_{j}^{t}$. In $M_{0}^{t} \cap M_{j}^{t}$ we apply part (ii) of Proposition 2.5 with $\Omega=\Omega_{0}$ and $\xi=\xi^{t}$, to get

$$
\left|\phi^{t}\right|_{g^{t}} \leq\left|\xi^{t}-\Omega_{0}\right|_{g_{0}} \quad \text { and } \quad\left|\nabla^{g^{t}} \phi^{t}\right|_{g^{t}} \leq C\left|\nabla^{g_{0}}\left(\xi^{t}-\Omega_{0}\right)\right|_{g_{0}}
$$

Combining this with (12) gives

$$
\left|\phi^{t}\right|_{g^{t}} \leq C_{3} t^{8 / 5} \quad \text { and } \quad\left|\mathrm{d} \phi^{t}\right|_{g^{t}} \leq\left|\nabla^{g^{t}} \phi^{t}\right|_{g^{t}} \leq C C_{3} t^{4 / 5}
$$

Now each $M_{0}^{t} \cap M_{j}^{t}$ is an annulus in \mathbb{R}^{8} / G with inner radius $t^{4 / 5} \zeta$ and outer radius $2 t^{4 / 5} \zeta$, and the metric g^{t} on $M_{0}^{t} \cap M_{j}^{t}$ is close to the flat metric g_{0} on \mathbb{R}^{8} / G. Therefore we can find $C_{4}>0$ independent of t such that $\sum_{j=1}^{k} \operatorname{vol}\left(M_{0}^{t} \cap M_{j}^{t}\right) \leq C_{4} t^{32 / 5}$. Hence

$$
\begin{aligned}
& \int_{M^{t}}\left|\phi^{t}\right|^{2} \mathrm{~d} V \leq\left(C_{3} t^{8 / 5}\right)^{2} C_{4} t^{32 / 5} \quad \text { and } \\
& \int_{M^{t}}\left|\mathrm{~d} \phi^{t}\right|^{10} \mathrm{~d} V \leq\left(C C_{3} t^{4 / 5}\right)^{10} C_{4} t^{32 / 5}
\end{aligned}
$$

Taking roots gives part (i) of the theorem, with $\lambda=C_{3} \max \left(C_{4}^{1 / 2}, C C_{4}^{1 / 10}\right)$.
Parts (ii) and (iii) are elementary. The metric $g_{n_{j}}^{t}$ is made by scaling $g_{n_{j}}$ by a factor t. Thus $\delta\left(g_{n_{j}}^{t}\right)=t \delta\left(g_{n_{j}}\right)$ and $\left\|R\left(g_{n_{j}}^{t}\right)\right\|_{C^{0}}=$ $t^{-2}\left\|R\left(g_{n_{j}}\right)\right\|_{C^{0}}$. We make g^{t} by gluing together the $g_{n_{j}}^{t}$ on the patches M_{j}^{t} for $j=1, \ldots, k$ and g_{z} on M_{0}^{t}. It is clear that for small t, the dominant contributions to $\delta\left(g^{t}\right)$ and $\left\|R\left(g^{t}\right)\right\|_{C^{0}}$ come from $\delta\left(g_{n_{j}}^{t}\right)$ and $\left\|R\left(g_{n_{j}}^{t}\right)\right\|_{C^{0}}$ for some j, and these are proportional to t and t^{-2}. This proves (ii) and (iii) for some $\mu, \nu>0$, and the theorem is complete. q.e.d.

Finally we can prove our main result.
Theorem 5.14. Suppose Condition 5.1 holds, and let M be the compact 8-manifold defined in Definition 5.8. Then there exist torsionfree $\operatorname{Spin}(7)$-structures $(\tilde{\Omega}, \tilde{g})$ on M. If $\pi_{1}(M)=\{1\}$ then $\operatorname{Hol}(\tilde{g})=$ $\operatorname{Spin}(7)$, and if $\pi_{1}(M)=\mathbb{Z}_{2}$ then $\operatorname{Hol}(\tilde{g})=\mathbb{Z}_{2} \ltimes \mathrm{SU}(4)$.

Proof. Let λ, μ, ν be as in Theorem 5.13. Then Theorem 2.6 gives a constant $\kappa>0$. Choose $t>0$ with $t \leq \epsilon \leq 1$ and $t \leq \kappa$. Let (Ω, g) be the $\operatorname{Spin}(7)$-structure $\left(\Omega^{t}, g^{t}\right)$ on $M=M^{t}$, and ϕ the 4 -form ϕ^{t}. Then $\mathrm{d} \Omega+\mathrm{d} \phi=0$ by Definition 5.12, and parts (i)-(iii) of Theorem 5.13 imply (i)-(iii) of Theorem 2.6, as $t \leq 1$.

Therefore all the hypotheses of Theorem 2.6 hold, and the theorem shows that there exists a torsion-free $\operatorname{Spin}(7)$-structure $(\tilde{\Omega}, \tilde{g})$ on M.

It remains to identify the holonomy $\operatorname{group} \operatorname{Hol}(\tilde{g})$ of \tilde{g}. Now we can regard the $\operatorname{Spin}(7)$-orbifold $\left(Z, \Omega_{Z}, g_{Z}\right)$ as the limit as $t \rightarrow 0$ of the $\operatorname{Spin}(7)$-manifolds $(M, \tilde{\Omega}, \tilde{g})$. Because of this, it is not difficult to show that $\operatorname{Hol}\left(g_{Z}\right) \subseteq \operatorname{Hol}(\tilde{g})$.

Now $\operatorname{Hol}\left(g_{Z}\right)=\mathbb{Z}_{2} \ltimes \operatorname{SU}(4)$, and thus

$$
\mathbb{Z}_{2} \ltimes \mathrm{SU}(4) \subseteq \operatorname{Hol}(\tilde{g}) \subseteq \operatorname{Spin}(7) .
$$

If $\pi_{1}(M)=\{1\}$ then $\operatorname{Hol}(\tilde{g})$ is connected. But the only connected Lie subgroup of $\operatorname{Spin}(7)$ containing $\mathbb{Z}_{2} \ltimes \operatorname{SU}(4)$ is $\operatorname{Spin}(7)$, so $\operatorname{Hol}(\tilde{g})=$ $\operatorname{Spin}(7)$. If $\pi_{1}(M)=\mathbb{Z}_{2}$ then $\operatorname{Hol}(\tilde{g}) \neq \operatorname{Spin}(7)$ by Theorem 2.3. This forces $\operatorname{Hol}^{0}(\tilde{g})=\operatorname{SU}(4)$, and it is then easy to see that $\operatorname{Hol}(\tilde{g})$ $=\mathbb{Z}_{2} \ltimes \operatorname{SU}(4)$. q.e.d.

Since by Proposition 5.9 we can always choose the n_{j} so that M is simply-connected, we can always arrange for \tilde{g} to have holonomy $\operatorname{Spin}(7)$. When $\pi_{1}(M)=\mathbb{Z}_{2}$, the complex orbifold Y has a crepant resolution \tilde{Y}, which admits Kähler metrics \tilde{g} with holonomy $\operatorname{SU}(4)$, making it into a Calabi-Yau manifold. The action of σ on Y lifts to a free action of σ on \tilde{Y}, and so $M=\tilde{Y} /\langle\sigma\rangle$ is a compact 8 -manifold. If we choose \tilde{g} to be σ-invariant then it pushes down to M, and has holonomy $\mathbb{Z}_{2} \ltimes \mathrm{SU}(4)$.

6. How to apply the construction

We now explain ways of finding orbifolds Y and involutions $\sigma: Y \rightarrow$ Y satisfying Condition 5.1, and how to calculate the Betti numbers of the resulting 8 -manifolds M with holonomy $\operatorname{Spin}(7)$.

6.1 Finding suitable Calabi-Yau 4-orbifolds Y

To apply the construction of $\S 5$ we need a source of compact Kähler 4orbifolds Y with $c_{1}(Y)=0$ and isolated singularities modelled on $\mathbb{C}^{4} / \mathbb{Z}_{4}$. Fortunately, physicists and algebraic geometers have been studying Ca-labi-Yau manifolds for many years, mainly in complex dimension 3. Several powerful methods have been developed for constructing CalabiYau manifolds, and we will adapt some of these to our problem.

The main idea we shall use is borrowed from Candelas, Lynker and Schrimmrigk [5], who constructed a large number of Calabi-Yau 3-folds as crepant resolutions of hypersurfaces in weighted projective spaces $\mathbb{C P}_{a_{0}, \ldots, a_{4}}^{4}$. We shall explain their methods, beginning with weighted projective spaces, which are an important class of complex orbifolds.

Definition 6.1. Let $m \geq 1$ be an integer, and $a_{0}, a_{1}, \ldots, a_{m}$ positive integers with highest common factor 1 . Let \mathbb{C}^{m+1} have complex coordinates on $\left(z_{0}, \ldots, z_{m}\right)$, and define an action of the complex Lie group \mathbb{C}^{*} on \mathbb{C}^{m+1} by

$$
\begin{equation*}
\left(z_{0}, \ldots, z_{m}\right) \stackrel{u}{\longmapsto}\left(u^{a_{0}} z_{0}, \ldots, u^{a_{m}} z_{m}\right), \quad \text { for } u \in \mathbb{C}^{*} \tag{13}
\end{equation*}
$$

Define the weighted projective space $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$ to be $\left(\mathbb{C}^{m+1} \backslash\{0\}\right) / \mathbb{C}^{*}$, where \mathbb{C}^{*} acts on $\mathbb{C}^{m+1} \backslash\{0\}$ with the action (13). Then $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$ is compact and Hausdorff, and has the structure of a complex orbifold.

Let $\left[z_{0}, \ldots, z_{m}\right]$ be a point in $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$, and let k be the highest common factor of the set of those a_{j} for which $z_{j} \neq 0$. If $k=1$ then $\left[z_{0}, \ldots, z_{m}\right]$ is a nonsingular point of $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$, and if $k>1$ then $\left[z_{0}, \ldots, z_{m}\right]$ is an orbifold point with orbifold group \mathbb{Z}_{k}.

We call a polynomial $f\left(z_{0}, \ldots, z_{m}\right)$ weighted homogeneous of degree d if

$$
f\left(u^{a_{0}} z_{0}, \ldots, u^{a_{m}} z_{m}\right)=u^{d} f\left(z_{0}, \ldots, z_{m}\right) \text { for all } u, z_{0}, \ldots, z_{m} \in \mathbb{C}
$$

Let f be such a polynomial, and define a hypersurface Y in $\mathbb{C P} \mathbb{P}_{a_{0}, \ldots, a_{m}}^{m}$ by

$$
Y=\left\{\left[z_{0}, \ldots, z_{m}\right] \in \mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}: f\left(z_{0}, \ldots, z_{m}\right)=0\right\}
$$

Then we call Y a hypersurface of degree d in $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$.
We say that f is transverse if $f\left(z_{0}, \ldots, z_{m}\right)=0$ and $\mathrm{d} f\left(z_{0}, \ldots, z_{m}\right)=$ 0 have no common solutions in $\mathbb{C}^{m+1} \backslash\{0\}$. If f is transverse then the only singular points of Y are also singular points of $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$, and Y is an orbifold, all of whose orbifold groups are cyclic. Note that for given weights a_{0}, \ldots, a_{m} and degree d, there may not exist any transverse polynomials f.

So let Y be a hypersurface of degree d in $\mathbb{C} \mathbb{P}_{a_{0}, \ldots, a_{m}}^{m}$, defined by a transverse polynomial. Using the adjunction formula, we find that $c_{1}(Y)=0$ if and only if $d=a_{0}+\cdots+a_{m}$. In this case it is easy to show that Y is a Calabi-Yau orbifold. Candelas et al. [5] considered the case $m=4$, and used a computer to search for Calabi-Yau 3-orbifolds of this kind, finding some 6000 examples. They then resolved the singularities of each to get a Calabi-Yau 3-manifold.

As we are interested in Calabi-Yau 4-orbifolds, we shall consider hypersurfaces Y in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$. Here is a simple class of such Y.

Example 6.2. Let a_{0}, \ldots, a_{5} be positive integers with highest common factor 1 , and let $d=a_{0}+\cdots+a_{5}$. Usually we order the a_{j} with $a_{0} \leq a_{1} \leq \cdots \leq a_{5}$. Suppose that a_{j} divides d for $j=0, \ldots, 5$, and define $k_{j}=d / a_{j}$. Define a hypersurface Y in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ by

$$
Y=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}: z_{0}^{k_{0}}+\cdots+z_{5}^{k_{5}}=0\right\}
$$

Since $a_{j} k_{j}=d$ we see that $z_{0}^{k_{0}}+\cdots+z_{5}^{k_{5}}$ is a weighted homogeneous polynomial of degree d, and it is also transverse.

Therefore Y is a complex orbifold, with singularities only at the intersection of Y with the singular set of $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$. Since the degree d of Y satisfies $d=a_{0}+\cdots+a_{5}$, we have $c_{1}(Y)=0$. Also Y admits Kähler metrics, as $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ is Kähler. So Y is a compact complex orbifold with $c_{1}(Y)=0$, admitting Kähler metrics.

Now to apply the construction of $\S 5$, the singular points of Y must satisfy Condition 5.1. This is a strong restriction on a_{0}, \ldots, a_{5}, which admits only a few solutions. However, we can get many other suitable orbifolds Y by generalizing our construction a bit. Here are four ways to do this.

- Defining Y by a different polynomial. We could define Y using some more general transverse weighted homogenous polynomial of degree d in z_{0}, \ldots, z_{5}, instead of $z_{0}^{k_{0}}+\cdots+z_{5}^{k_{5}}$. The requirement that a_{j} divides d for $j=0, \ldots, 5$ is then replaced by some other condition on the a_{j} and d.
- Dividing by a finite group. Let W be a Calabi-Yau hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$, and G a finite group acting on W preserving its Calabi-Yau structure. Then $Y=W / G$ is a Calabi-Yau orbifold.
- Partial crepant resolutions. Let W be a Calabi-Yau hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ which has some singularities of the kind we want, together with other singularities that we don't want. We let Y be a partial crepant resolution of W, which resolves the singularities that we don't want, leaving those that we do.
- Complete intersections in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{m}$. Rather than a hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$, we take Y to be a complete intersection of $m-4$ hypersurfaces in $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$, for some $m>5$.
We can also use combinations of these four techniques - for instance, we can take Y to be a partial crepant resolution of W / G, where W is a hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$, and G a finite group acting on W.

6.2 Antiholomorphic maps $\sigma: Y \rightarrow Y$

Suppose we have chosen an orbifold Y as above, with isolated singular points p_{1}, \ldots, p_{k}. The next ingredient in our construction is an antiholomorphic involution $\sigma: Y \rightarrow Y$, which should fix only p_{1}, \ldots, p_{k}. For example, suppose Y is a hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$. Then to find σ we would look for an antiholomorphic involution $\sigma: \mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5} \rightarrow \mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ with $\sigma(Y)=Y$, and restrict σ to Y.

The most obvious such σ maps $\left[z_{0}, \ldots, z_{5}\right] \mapsto\left[\bar{z}_{0}, \ldots, \bar{z}_{5}\right]$. But this will not do, as its fixed points are not isolated in Y. To get isolated fixed points we need to try something more subtle. Here is an example of the kind of thing we mean.

Example 6.3. In the situation of Example 6.2, suppose that a_{0}, \ldots, a_{3} are odd and a_{4}, a_{5} even with $a_{0}=a_{1}, a_{2}=a_{3}$ and $a_{4}=a_{5}$. Define $\sigma: \mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5} \rightarrow \mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ by

$$
\sigma:\left[z_{0}, \ldots, z_{5}\right] \mapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{5}, \bar{z}_{4}\right] .
$$

As σ swaps the pairs z_{0}, z_{1} and z_{2}, z_{3} and z_{4}, z_{5}, we need $a_{0}=a_{1}, a_{2}=a_{3}$ and $a_{4}=a_{5}$ for σ to be well-defined. Clearly σ is antiholomorphic, and $\sigma(Y)=Y$.

Now σ^{2} acts by

$$
\sigma^{2}:\left[z_{0}, \ldots, z_{5}\right] \mapsto\left[-z_{0},-z_{1},-z_{2},-z_{3}, z_{4}, z_{5}\right] .
$$

But putting $u=-1$ in (13) gives $\left[-z_{0},-z_{1},-z_{2},-z_{3}, z_{4}, z_{5}\right]=\left[z_{0}, \ldots, z_{5}\right]$, as a_{0}, \ldots, a_{3} are odd and a_{4}, a_{5} even. Thus $\sigma^{2}=1$, and $\sigma: Y \rightarrow Y$ is an antiholomorphic involution.

It is not difficult to show that the fixed points of σ in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ are

$$
\left\{\left[0,0,0,0,1, \mathrm{e}^{i \theta}\right] \in \mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}: \theta \in[0,2 \pi)\right\}
$$

Now $\left[0,0,0,0,1, \mathrm{e}^{i \theta}\right]$ lies in Y if $1+e^{k_{5} i \theta}=0$. The solutions to this equation are $\operatorname{hcf}\left(k_{4}, k_{5}\right)$ isolated points in Y.

Observe the trick we have used here: if $a_{j}=a_{j+1}$ then we can choose σ to act on the coordinates z_{j}, z_{j+1} by $\left(z_{j}, z_{j+1}\right) \mapsto\left(\bar{z}_{j+1},-\bar{z}_{j}\right)$. All the fixed points of σ will then satisfy $z_{j}=z_{j+1}=0$. By doing this with two pairs of coordinates, say z_{0}, z_{1} and z_{2}, z_{3}, the fixed points of σ satisfy $z_{0}=z_{1}=z_{2}=z_{3}=0$. Thus they will be of complex codimension 4 in Y, and will be isolated, as we want.

This trick can also be adapted to more general situations, in which Y is a quotient by a finite group, or a partial crepant resolution, and so on. Note that as σ^{2} maps $\left(z_{j}, z_{j+1}\right) \mapsto\left(-z_{j},-z_{j+1}\right)$, care must be taken to ensure that $\sigma^{2}=1$.

6.3 Calculating the Euler characteristic of Y

To determine the Betti numbers of the 8 -manifold M that we construct, we will need to know the Euler characteristic of Y. Now there are two different notions of the Euler characteristic of an orbifold, defined by Satake [19, §3.3]. The version we are interested in is the ordinary Euler characteristic $\chi(Y)$, which is an integer and satisfies $\chi(Y)=\sum_{j=0}^{2 n}(-1)^{j} b^{j}(Y)$. There is also the orbifold Euler characteristic $\chi_{V}(Y)$, which is a rational number that crops up naturally in problems involving characteristic classes.

In the next example we explain an elementary and fairly crude method for finding $\chi(Y)$ in the case that Y is a hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{m}}^{m}$, of the kind considered in Example 6.2. It is also possible to calculate $\chi_{V}(Y)$ using Chern classes and get $\chi(Y)$ by adding on contributions from the singular set (see for instance Hosono et al. [9, §2]), but we will not discuss this.

Example 6.4. Let $a_{0}, \ldots, a_{m}, k_{0}, \ldots, k_{m}$ and d be positive integers with $a_{j} k_{j}=d$ for $j=0, \ldots, m$. For each $j=0, \ldots, m$, define $Y_{j} \subset$ $\mathbb{C P}_{a_{0}, \ldots, a_{j}}^{j}$ by

$$
Y_{j}=\left\{\left[z_{0}, \ldots, z_{j}\right] \in \mathbb{C P}_{a_{0}, \ldots, a_{j}}^{j}: z_{0}^{k_{0}}+\cdots+z_{j}^{k_{j}}=0\right\},
$$

and define $\pi_{j}: Y_{j} \rightarrow \mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1}$ by $\pi_{j}:\left[z_{0}, \ldots, z_{j}\right] \mapsto\left[z_{0}, \ldots, z_{j-1}\right]$.
Suppose for simplicity that a_{i} divides a_{j} for $0 \leq i<j \leq m$. Then for each j, π_{j} is a k_{j}-fold branched cover of $\mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1}$, branched over Y_{j-1}. That is, if $p \in \mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1}$ then $\pi_{j}^{-1}(p)$ is one point when $p \in Y_{j-1}$ and k_{j} points when $p \notin Y_{j-1}$. It follows that

$$
\begin{align*}
\chi\left(Y_{j}\right) & =k_{j} \cdot \chi\left(\mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1}\right)+\left(1-k_{j}\right) \chi\left(Y_{j-1}\right) \tag{14}\\
& =k_{j} j+\left(1-k_{j}\right) \chi\left(Y_{j-1}\right),
\end{align*}
$$

since $\chi\left(\mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1}\right)=j$. This equation gives $\chi\left(Y_{j}\right)$ in terms of $\chi\left(Y_{j-1}\right)$. Hence by induction we can write $\chi\left(Y_{m}\right)$ in terms of $\chi\left(Y_{0}\right)$. But $Y_{0}=\emptyset$ so that $\chi\left(Y_{0}\right)=0$, and thus we determine $\chi\left(Y_{m}\right)$.

If a_{i} does not divide a_{j} for some $0 \leq i<j \leq m$, then π_{j} is also branched over other parts of $\mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1}$. Let $p=\left[z_{0}, \ldots, z_{j-1}\right]$ be in $\mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1} \backslash Y_{j-1}$, and let I be the set of i in $\{0, \ldots, j-1\}$ for which $z_{i} \neq 0$. Define $l=\operatorname{hcf}\left(a_{i}: i \in I\right)$ and $m=\operatorname{hcf}\left(l, a_{j}\right)$. Then it turns out that $\pi_{j}^{-1}(p)$ is $k_{j} m / l$ points in Y_{j}. Clearly $k_{j} m / l=k_{j}$ if $l=m$, that is, if l divides a_{j}.

Thus π_{j} is also branched over subsets of $\mathbb{C P}_{a_{0}, \ldots, a_{j-1}}^{j-1} \backslash Y_{j-1}$ corresponding to subsets $I \subseteq\{0, \ldots, j-1\}$ for which $l=\operatorname{hcf}\left(a_{i}: i \in I\right)$ does not divide a_{j}. To calculate $\chi\left(Y_{j}\right)$ in this case we must modify (14) by adding in contributions from each such I. We will explain this when we meet it in examples later.

6.4 How to find topological invariants of Y, Z and M

To calculate the cohomology and fundamental group of our complex orbifolds Y we will need the following result, a form of the Lefschetz Hyperplane Theorem. It is proved in Griffiths and Harris [8, p. 156] and Goresky and MacPherson [6, p. 153].

Theorem 6.5. Let M be a compact, m-dimensional complex manifold, N a nonsingular hypersurface in M, and L the holomorphic line bundle over M associated to the divisor N. Suppose L is positive. Then:
(a) the map $H^{k}(M, \mathbb{C}) \rightarrow H^{k}(N, \mathbb{C})$ induced by the inclusion $N \hookrightarrow M$ is an isomorphism for $0 \leq k \leq m-2$ and injective for $k=m-1$, and
(b) the map of homotopy groups $\pi_{k}(N) \rightarrow \pi_{k}(M)$ induced by the inclusion $N \hookrightarrow M$ is an isomorphism for $0 \leq k \leq m-2$ and surjective for $k=m-1$.

The result also holds if M and N are orbifolds instead of manifolds, and N is a nonsingular hypersurface in the orbifold sense.

Here is a procedure for calculating the fundamental group and Betti numbers of Y, Z and M. The most difficult part is finding the Euler characteristic $\chi(Y)$, which we have already explained above.
(a) Calculate $\pi_{1}(Y), H^{2}(Y, \mathbb{C})$ and $H^{3}(Y, \mathbb{C})$ explicitly. This can usually be done using Theorem 6.5. If Y is a hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ then $\pi_{1}(Y)=\{1\}, H^{2}(Y, \mathbb{C})=\mathbb{C}$ and $H^{3}(Y, \mathbb{C})=0$. Verify that $\pi_{1}\left(Y \backslash\left\{p_{1}, \ldots, p_{k}\right\}\right)=\{1\}$ and $h^{2,0}(Y)=0$, as in Condition 5.1.
(b) Compute the Euler characteristic $\chi(Y)$ of Y, as in $\S 6.3$.
(c) Calculate $H^{2}(Z, \mathbb{C})$ and $H^{3}(Z, \mathbb{C})$ from $H^{2}(Y, \mathbb{C})$ and $H^{3}(Y, \mathbb{C})$. Note that $H^{j}(Z, \mathbb{C})$ is the σ-invariant part of $H^{j}(Y, \mathbb{C})$. Since σ swaps $H^{p, q}(Y)$ and $H^{q, p}(Y)$, it follows that $b^{3}(Z)=\frac{1}{2} b^{3}(Y)$.
(d) Compute the Euler characteristic $\chi(Z)$ of Z. If σ fixes k points in Y, then this is given by $\chi(Z)=\frac{1}{2}(\chi(Y)+k)$.
(e) From (c) we know $b^{2}(Z)$ and $b^{3}(Z)$, and $b^{1}(Z)=0$ as $\pi_{1}(Z)$ is finite. Thus we can calculate $b^{4}(Z)$ using the formula $b^{4}(Z)=$ $\chi(Z)-2-2 b^{2}(Z)+2 b^{3}(Z)$.
(f) Now M was constructed in $\S 5$ by gluing $X_{n_{1}}, \ldots, X_{n_{k}}$ into Z, where $n_{j}=1$ or 2 and X_{1}, X_{2} are defined in $\S 4$. It is easy to show that the Betti numbers of X_{1} and X_{2} are $b^{1}=b^{2}=b^{3}=0$ and $b^{4}=1$. Therefore the Betti numbers $b^{j}(M)$ satisfy

$$
\begin{equation*}
b^{j}(M)=b^{j}(Z) \text { for } j=1,2,3, \text { and } b^{4}(M)=b^{4}(Z)+k . \tag{15}
\end{equation*}
$$

Also, Proposition 5.9 gives $\pi_{1}(M)$.
(g) As M has metrics with holonomy $\operatorname{Spin}(7)$ or $\mathbb{Z}_{2} \ltimes \mathrm{SU}(4)$ by Theorem 5.14, we know that $\hat{A}(M)=1$. Thus (2) gives

$$
b^{2}(M)-b^{3}(M)-b_{+}^{4}(M)+2 b_{-}^{4}(M)+25=0 .
$$

So we can calculate $b_{ \pm}^{4}(M)$ using the equations

$$
\begin{align*}
& b_{+}^{4}(M)=\frac{1}{3}\left(b^{2}(M)-b^{3}(M)+2 b^{4}(M)+25\right) \\
& b_{-}^{4}(M)=\frac{1}{3}\left(-b^{2}(M)+b^{3}(M)+b^{4}(M)-25\right) \tag{16}
\end{align*}
$$

6.5 A way of checking the answers

If you make a mistake at some stage in these calculations, which is quite easy to do, then you are likely not to notice unless your values for $b_{ \pm}^{4}(M)$ are not integers. Thus it is desirable to have some method for checking the answers. Here is a way of doing this. All of our examples have been checked for consistency in this way and others, but for brevity we will leave out the calculations.

Suppose we can compute the Hodge number $h^{3,1}(Y)$, using complex geometry. Then we can compute $b_{-}^{4}(Z)$ using the formula

$$
b_{-}^{4}(Z)=h^{3,1}(Y)+b^{2}(Y)-b^{2}(Z)-1 .
$$

But as X_{1} and X_{2} have $b_{-}^{4}=1$, as in (15) we have $b_{-}^{4}(M)=b_{-}^{4}(Z)+k$. This gives an independent way of finding $b_{-}^{4}(M)$, which can be compared with your answer in part (g) above.

Now there is a complicated method for computing $h^{3,1}(Y)$ involving spectral sequences, and also a much simpler method called the 'polynomial deformation method' which does not always give the right answer. Both are discussed by Green and Hübsch [7]. Here is a sketch of the polynomial deformation method.

For simplicity suppose that Y is a hypersurface of degree d in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$. As Y is a Calabi-Yau orbifold, $h^{3,1}(Y)$ is the dimension of the moduli space of complex structures on Y. We assume (this is not necessarily true) that every small deformation of Y is also a hypersurface of degree d in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$, and that two nearby isomorphic hypersurfaces Y, Y^{\prime} of degree d are related by an automorphism of $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$.

If these assumptions hold, then $h^{3,1}(Y)=m-n$, where m is the dimension of the space of hypersurfaces of degree d in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$, and n is the dimension of the automorphism group of $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$. Both m and n are readily computed from a_{0}, \ldots, a_{5} and d.

7. A simple example

Let Y be the hypersurface of degree 12 in $\mathbb{C P}_{1,1,1,1,4,4}^{5}$ given by

$$
Y=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{1,1,1,1,4,4}^{5}: z_{0}^{12}+z_{1}^{12}+z_{2}^{12}+z_{3}^{12}+z_{4}^{3}+z_{5}^{3}=0\right\} .
$$

Then $c_{1}(Y)=0$, as $12=1+1+1+1+4+4$, and Y is Kähler as $\mathbb{C P}_{1, \ldots, 4}^{5}$ is Kähler. Calculation shows that Y has three singular points $p_{1}=$ $[0,0,0,0,1,-1], p_{2}=\left[0,0,0,0,1, e^{\pi i / 3}\right]$ and $p_{3}=\left[0,0,0,0,1, e^{-\pi i / 3}\right]$, satisfying Condition 5.1.

We use the method of $\S 6.3$ to calculate the Euler characteristic $\chi(Y)$.
Proposition 7.1. The orbifold Y defined above has $\chi(Y)=4887$.
Proof. Define Y_{j} and π_{j} as in $\S 6.3$, where $Y_{5}=Y$. Then Y_{1} is the set of 12 points $\left[z_{0}, z_{1}\right]$ in $\mathbb{C P}^{1}$ with $z_{0}^{12}+z_{1}^{12}=0$, and so $\chi\left(Y_{1}\right)=12$. Now $\pi_{2}: Y_{2} \rightarrow \mathbb{C P}^{1}$ is a 12 -fold branched cover branched over Y_{1}, so by (14) we have

$$
\chi\left(Y_{2}\right)=12 \chi\left(\mathbb{C P}^{1}\right)-11 \chi\left(Y_{1}\right)=12 \cdot 2-11 \cdot 12=-108 .
$$

Similarly, $\pi_{3}: Y_{3} \rightarrow \mathbb{C P}^{2}$ is a 12 -fold branched cover branched over Y_{2}, so that

$$
\chi\left(Y_{3}\right)=12 \chi\left(\mathbb{C P}^{2}\right)-11 \chi\left(Y_{2}\right)=12 \cdot 2-11 \cdot(-108)=1224
$$

And $\pi_{4}: Y_{4} \rightarrow \mathbb{C P}^{3}$ is a 3 -fold branched cover of $\mathbb{C P}^{3}$ branched over Y_{3}, giving

$$
\chi\left(Y_{4}\right)=3 \chi\left(\mathbb{C P}^{3}\right)-2 \chi\left(Y_{3}\right)=3 \cdot 4-2 \cdot 1224=-2436 .
$$

Finally, $\pi_{5}: Y \rightarrow \mathbb{C P}_{1,1,1,1,4}^{4}$ is a 3 -fold branched cover of $\mathbb{C P}_{1,1,1,1,4}^{4}$ branched over Y_{4}, and so

$$
\chi(Y)=3 \chi\left(\mathbb{C P}_{1,1,1,1,4}^{4}\right)-2 \chi\left(Y_{4}\right)=3 \cdot 5-2 \cdot(-2436)=4887,
$$

as we want. q.e.d.
Proposition 7.2. The Betti numbers of Y are

$$
b^{0}(Y)=1, \quad b^{1}(Y)=0, \quad b^{2}(Y)=1, \quad b^{3}(Y)=0 \text { and } b^{4}(Y)=4883 .
$$

Also $Y \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ is simply-connected and $h^{2,0}(Y)=0$.
Proof. Theorem 6.5 shows that $H^{k}(Y, \mathbb{C}) \cong H^{k}\left(\mathbb{C P}_{1, \ldots, 4}^{5}, \mathbb{C}\right)$ for $0 \leq$ $k \leq 3$. Since $b^{k}\left(\mathbb{C P}_{1, \ldots, 4}^{5}\right)$ is 1 for k even with $0 \leq k \leq 10$ and 0 otherwise, this shows that $b^{0}(Y)=b^{2}(Y)=1$ and $b^{1}(Y)=b^{3}(Y)=0$, and so $b^{4}(Y)=4883$ as $\chi(Y)=4887$.

Theorem 6.5 also gives $\pi_{1}(Y) \cong \pi_{1}\left(\mathbb{C P}_{1, \ldots, 4}^{5}\right)$, so Y is simply-connected. As the nonsingular set of $\mathbb{C P}_{1, \ldots, 4}^{5}$ is simply-connected, we can strengthen this to show that $Y \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ is simply-connected. The isomorphism $H^{k}(Y, \mathbb{C}) \cong H^{k}\left(\mathbb{C P}_{1, \ldots, 4}^{5}, \mathbb{C}\right)$ above identifies $H^{p, q}(Y)$ with $H^{p, q}\left(\mathbb{C P}_{1, \ldots, 4}^{5}\right)$, and so $h^{p, q}(Y)=h^{p, q}\left(\mathbb{C P}_{1, \ldots, 4}^{5}\right)$ for $p+q \leq 3$. Hence $h^{2,0}(Y)=0$.
q.e.d.

Now define a map $\sigma: Y \rightarrow Y$ by

$$
\sigma:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{5}, \bar{z}_{4}\right] .
$$

As in Example 6.3, we find that σ is an antiholomorphic involution of Y, and that the fixed points of σ are exactly p_{1}, p_{2}, p_{3}. Thus Condition 5.1 holds for Y and σ. So we can apply the construction of $\S 5$, and resolve the orbifold $Z=Y /\langle\sigma\rangle$ to get a compact 8 -manifold M. Choosing $n_{j}=2$ for at least one $j=1,2,3$, Proposition 5.9 shows that M is simply-connected, and Theorem 5.14 shows that M admits metrics with holonomy $\operatorname{Spin}(7)$.

Theorem 7.3. This compact 8-manifold M has Betti numbers

$$
b^{0}=1, \quad b^{1}=b^{2}=b^{3}=0, b^{4}=2446, \quad b_{+}^{4}=1639 \text { and } b_{-}^{4}=807 .
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M, which form a smooth family of dimension 808.

Proof. We first calculate the Betti numbers of Z. As σ fixes 3 points in Y, by properties of the Euler characteristic we find that $\chi(Z)=$ $\frac{1}{2}(\chi(Y)+3)$. But $\chi(Y)=4887$ by Proposition 7.1, so $\chi(Z)=2445$. As $H^{k}(Z, \mathbb{C})$ is the σ-invariant part of $H^{k}(Y, \mathbb{C})$ we see from Proposition 7.2 that $b^{0}(Z)=1$ and $b^{1}(Z)=b^{3}(Z)=0$. Also $H^{2}(Y, \mathbb{C})$ is generated by $\left[\omega_{Y}\right]$ and $\sigma^{*}\left(\omega_{Y}\right)=-\omega_{Y}$, so σ acts as -1 on $H^{2}(Y, \mathbb{C})$, and $H^{2}(Z, \mathbb{C})=0$.

Thus $b^{0}(Z)=1, b^{1}(Z)=b^{2}(Z)=b^{3}(Z)=0$ and $\chi(Z)=2445$, giving $b^{4}(Z)=2443$. Equation (15) then gives the Betti numbers of M, and (16) gives $b_{ \pm}^{4}$. Theorem 5.14 shows that there exist torsion-free $\operatorname{Spin}(7)$-structures $(\tilde{\Omega}, \tilde{g})$ on M, with $\operatorname{Hol}(\tilde{g})=\operatorname{Spin}(7)$ as M is simplyconnected. By Theorem 2.4 the moduli space of metrics on M with holonomy $\operatorname{Spin}(7)$ is a smooth manifold of dimension $1+b_{-}^{4}(M)=808$.
q.e.d.

7.1 A variation on this example

Here is a variation on the above, using the idea of partial crepant resolution mentioned in $\S 6.1$. Let Y be as above, but define $\sigma^{\prime}: Y \rightarrow Y$ by

$$
\sigma^{\prime}:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{4}, \bar{z}_{5}\right] .
$$

Then σ^{\prime} is an antiholomorphic involution of Y, which fixes the point $p_{1}=[0,0,0,0,1,-1]$ in Y, and no other points. In particular, σ^{\prime} swaps over the other two singular points p_{2}, p_{3}.

Thus Y and σ^{\prime} do not satisfy Condition 5.1, because the fixed set of σ^{\prime} is not the same as the singular set $\left\{p_{1}, p_{2}, p_{3}\right\}$ of Y. To rectify this we resolve the singular points p_{2}, p_{3}. Let Y^{\prime} be the blow-up of Y at p_{2} and p_{3}. This is a crepant resolution of Y, and so is also a Calabi-Yau orbifold.

Then Y^{\prime} has just the one singular point p_{1}. The action of σ^{\prime} on Y lifts to Y^{\prime}, with sole fixed point p_{1}. Thus Condition 5.1 holds for Y^{\prime} and σ^{\prime}. Therefore we can apply the construction of $\S 5$ to Y^{\prime} and σ^{\prime}, so that $Z^{\prime}=Y^{\prime} /\left\langle\sigma^{\prime}\right\rangle$ is a compact $\operatorname{Spin}(7)$-orbifold with one singular point p_{1} modelled on \mathbb{R}^{8} / G. Choosing $n_{1}=2$ we get a resolution M^{\prime} of
Z^{\prime}, which is a compact, simply-connected 8-manifold admitting metrics with holonomy $\operatorname{Spin}(7)$.

We shall calculate the topological invariants of Y^{\prime} and M^{\prime}.
Proposition 7.4. The Betti numbers of Y^{\prime} are
$b^{0}=1, b^{1}=0, b^{2}=3, b^{3}=0$ and $b^{4}=4885$, so that $\chi\left(Y^{\prime}\right)=4893$.
Also, $Y^{\prime} \backslash\left\{p_{1}\right\}$ is simply-connected and $h^{2,0}\left(Y^{\prime}\right)=0$.
Proof. By definition Y^{\prime} is the blow-up of Y at p_{2}, p_{3}. Each blow-up fixes b^{1} and b^{3} and adds 1 to b^{2} and b^{4}. So the Betti numbers of Y^{\prime} follow from Proposition 7.2. As $Y \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ is simply-connected and $h^{2,0}(Y)=0$, we see that $Y^{\prime} \backslash\left\{p_{1}\right\}$ is simply-connected and $h^{2,0}\left(Y^{\prime}\right)=0$. q.e.d.

Here is the analogue of Theorem 7.3:
Theorem 7.5. This compact 8-manifold M^{\prime} has Betti numbers
$b^{0}=1, b^{1}=0, b^{2}=1, b^{3}=0, b^{4}=2444, b_{+}^{4}=1638$ and $b_{-}^{4}=806$.
There exist metrics with holonomy $\operatorname{Spin}(7)$ on M^{\prime}, which form a smooth family of dimension 807.

Proof. As σ fixes 1 point in Y^{\prime} we have $\chi\left(Z^{\prime}\right)=\frac{1}{2}\left(\chi\left(Y^{\prime}\right)+1\right)$, so $\chi\left(Z^{\prime}\right)=2447$ by the previous proposition. Since $H^{k}\left(Z^{\prime}, \mathbb{C}\right)$ is the σ invariant part of $H^{k}\left(Y^{\prime}, \mathbb{C}\right)$ we have $b^{0}\left(Z^{\prime}\right)=1$ and $b^{1}\left(Z^{\prime}\right)=b^{3}\left(Z^{\prime}\right)=0$. Now $b^{2}\left(Y^{\prime}\right)=3$, and $H^{2}\left(Y^{\prime}, \mathbb{C}\right)$ is generated by $\left[\omega_{Y^{\prime}}\right]$ and the cohomology classes dual to the two exceptional divisors $\mathbb{C P}^{3}$ introduced by blowing up p_{2} and p_{3}. But σ^{\prime} swaps p_{2} and p_{3}, so σ_{*}^{\prime} swaps the corresponding classes in $H^{2}\left(Y^{\prime}, \mathbb{C}\right)$, and $\sigma_{*}^{\prime}\left(\omega_{Y^{\prime}}\right)=-\omega_{Y^{\prime}}$ by definition. Therefore $H^{2}\left(Y^{\prime}, \mathbb{C}\right) \cong \mathbb{C} \oplus \mathbb{C}^{2}$, where σ_{*}^{\prime} acts as 1 on \mathbb{C} and -1 on \mathbb{C}^{2}. Hence $H^{2}\left(Z^{\prime}, \mathbb{C}\right) \cong \mathbb{C}$, and $b^{2}\left(Z^{\prime}\right)=1$.

Thus $b^{0}\left(Z^{\prime}\right)=b^{2}\left(Z^{\prime}\right)=1, b^{1}\left(Z^{\prime}\right)=b^{3}\left(Z^{\prime}\right)=0$ and $\chi\left(Z^{\prime}\right)=2447$, giving $b^{4}\left(Z^{\prime}\right)=2443$. Equation (15) then gives the Betti numbers of M, and (16) gives $b_{ \pm}^{4}$. Theorem 5.14 shows that there exist torsion-free $\operatorname{Spin}(7)$-structures $(\tilde{\Omega}, \tilde{g})$ on M, with $\operatorname{Hol}(\tilde{g})=\operatorname{Spin}(7)$ as M is simplyconnected. By Theorem 2.4 the moduli space of metrics on M with holonomy $\operatorname{Spin}(7)$ is a smooth manifold of dimension $1+b_{-}^{4}(M)=807$. q.e.d.

Observe that the Betti numbers of M and M^{\prime} in Theorems 7.3 and 7.5 are very similar. It is an interesting question whether one can regard M and M^{\prime} as two different resolutions of some singular Spin(7)-manifold M_{0}, not necessarily an orbifold. We leave this as a research exercise for the reader; the answer is not as simple as it looks.

8. Examples from hypersurfaces in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$

Here are three more examples based on hypersurfaces in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$.

8.1 A hypersurface of degree 16 in $\mathbb{C P}_{1,1,1,1,4,8}^{5}$

Let Y be the hypersurface of degree 16 in $\mathbb{C P}_{1,1,1,1,4,8}^{5}$ given by

$$
Y=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{1,1,1,1,4,8}^{5}: z_{0}^{16}+z_{1}^{16}+z_{2}^{16}+z_{3}^{16}+z_{4}^{4}+z_{5}^{2}=0\right\}
$$

Then $c_{1}(Y)=0$. We find that Y has two singular points $p_{1}=[0,0,0,0,1, i]$ and $p_{2}=[0,0,0,0,1,-i]$, both satisfying Condition 5.1.

Following Propositions 7.1 and 7.2 , we find that $\chi(Y)=9498$, and
Proposition 8.1. The Betti numbers of Y are

$$
b^{0}=1, \quad b^{1}=0, \quad b^{2}=1, \quad b^{3}=0 \quad \text { and } \quad b^{4}=9494
$$

Also $Y \backslash\left\{p_{1}, p_{2}\right\}$ is simply-connected and $h^{2,0}(Y)=0$.
Define an antiholomorphic involution $\sigma: Y \rightarrow Y$ by

$$
\sigma:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{4},-\bar{z}_{5}\right] .
$$

The fixed points of σ are exactly the singular points p_{1}, p_{2} of Y. Thus Condition 5.1 holds for Y and σ, and we can apply the construction of $\S 5$. Resolving $Z=Y /\langle\sigma\rangle$ gives a compact 8 -manifold M. We choose at least one of n_{1}, n_{2} to be 2 , so that M is simply-connected. Then as in Theorem 7.3, we get:

Theorem 8.2. This compact 8-manifold M has Betti numbers

$$
b^{0}=1, \quad b^{1}=b^{2}=b^{3}=0, \quad b^{4}=4750, \quad b_{+}^{4}=3175 \text { and } b_{-}^{4}=1575
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M, which form a smooth family of dimension 1576.

8.2 A hypersurface of degree 24 in $\mathbb{C P}_{1,1,1,1,8,12}^{5}$

Let Y be the hypersurface of degree 24 in $\mathbb{C P}_{1,1,1,1,8,12}^{5}$ given by

$$
Y=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{1,1,1,1,8,12}^{5}: z_{0}^{24}+z_{1}^{24}+z_{2}^{24}+z_{3}^{24}+z_{4}^{3}+z_{5}^{2}=0\right\}
$$

Then $c_{1}(Y)=0$. We find that Y has one singular point $p_{1}=[0,0,0,0,-1,1]$, which satisfies Condition 5.1.

Following Proposition 7.1, we find that $\chi(Y)=23325$. Care is needed to get the right answer here. Define $\pi_{5}: Y \rightarrow \mathbb{C P}_{1,1,1,1,8}^{4}$ by $\pi_{5}:\left[z_{0}, \ldots, z_{5}\right] \mapsto\left[z_{0}, \ldots, z_{4}\right]$, and $Y_{4} \subset \mathbb{C P}_{1,1,1,1,8}^{4}$ by

$$
Y_{4}=\left\{\left[z_{0}, \ldots, z_{4}\right] \in \mathbb{C P}_{1,1,1,1,8}^{4}: z_{0}^{24}+z_{1}^{24}+z_{2}^{24}+z_{3}^{24}+z_{4}^{3}=0\right\}
$$

Then π_{5} is a double cover of $\mathbb{C P}_{1,1,1,1,8}^{4}$ branched over Y_{4} and the point $[0,0,0,0,1]$ in $\mathbb{C P}_{1,1,1,1,8}^{4}$. Hence we get

$$
\chi(Y)=2 \chi\left(\mathbb{C P}_{1,1,1,1,8}^{4}\right)-\chi\left(Y_{4}\right)-\chi([0,0,0,0,1])=9-\chi\left(Y_{4}\right)
$$

If we had not observed that π_{5} is also branched over $[0,0,0,0,1]$, then we would have got $\chi(Y)=23326$, which is incorrect.

As in Proposition 7.2, we show:
Proposition 8.3. The Betti numbers of Y are

$$
b^{0}=1, \quad b^{1}=0, \quad b^{2}=1, \quad b^{3}=0 \quad \text { and } \quad b^{4}=23231
$$

Also $Y \backslash\left\{p_{1}\right\}$ is simply-connected and $h^{2,0}(Y)=0$.
Define an antiholomorphic involution $\sigma: Y \rightarrow Y$ by

$$
\sigma:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{4}, \bar{z}_{5}\right]
$$

The fixed points of σ are exactly the singular point p_{1} of Y. Thus Condition 5.1 holds for Y and σ, and choosing the simply-connected resolution M of $Z=Y /\langle\sigma\rangle$, in the usual way we get:

Theorem 8.4. This compact 8-manifold M has Betti numbers

$$
b^{0}=1, \quad b^{1}=b^{2}=b^{3}=0, \quad b^{4}=11662, \quad b_{+}^{4}=7783 \text { and } b_{-}^{4}=3879
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M, which form a smooth family of dimension 3880.

This is the example with the largest value of b^{4} known to the author.

8.3 A hypersurface of degree 40 in $\mathbb{C P}_{1,1,5,5,8,20}^{5}$

Here is a more complicated example, in which the hypersurface in $\mathbb{C P}_{a_{0}, \ldots, a_{5}}^{5}$ has other singularities which must first be resolved. Let W be the hypersurface of degree 40 in $\mathbb{C P}_{1,1,5,5,8,20}^{5}$ given by

$$
W=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{1,1,5,5,8,20}^{5}: z_{0}^{40}+z_{1}^{40}+z_{2}^{8}+z_{3}^{8}+z_{4}^{5}+z_{5}^{2}=0\right\} .
$$

Then $c_{1}(W)=0$. The singularities of W are the disjoint union of the single point $p_{1}=[0,0,0,0,-1,1]$ and the nonsingular curve Σ of genus 3 given by

$$
\Sigma=\left\{\left[0,0, z_{2}, z_{3}, 0, z_{5}\right] \in \mathbb{C P}_{1,1,5,5,8,20}^{5}: z_{2}^{8}+z_{3}^{8}+z_{5}^{2}=0\right\}
$$

The singular point at p_{1} satisfies Condition 5.1. The singularity at each point of Σ is modelled on $\mathbb{C} \times \mathbb{C}^{3} / \mathbb{Z}_{5}$, where the generator β of \mathbb{Z}_{5} acts on \mathbb{C}^{3} by

$$
\beta:\left(z_{0}, z_{1}, z_{4}\right) \mapsto\left(\mathrm{e}^{2 \pi i / 5} z_{0}, \mathrm{e}^{2 \pi i / 5} z_{1}, \mathrm{e}^{-4 \pi i / 5} z_{4}\right)
$$

Now the singularity $\mathbb{C}^{3} / \mathbb{Z}_{5}$ normal to Σ in W has a unique crepant resolution X, which can be described using toric geometry. Let Y be the partial crepant resolution of W which resolves the singularities at Σ using X, but leaves the singular point p_{1} unchanged.

Proposition 8.5. The Betti numbers of Y are

$$
b^{0}=1, \quad b^{1}=0, \quad b^{2}=3, \quad b^{3}=12, \quad \text { and } \quad b^{4}=7453
$$

Also $Y \backslash\left\{p_{1}\right\}$ is simply-connected and $h^{2,0}(Y)=0$.
Proof. Calculating the Betti numbers of W in the usual way gives

$$
\begin{equation*}
b^{0}(W)=1, \quad b^{1}(W)=0, \quad b^{2}(W)=1, \quad b^{3}(W)=0, \quad b^{4}(W)=7449 \tag{17}
\end{equation*}
$$

As W is modelled on $\mathbb{C} \times \mathbb{C}^{3} / \mathbb{Z}_{5}$ at each point of Σ, the resolution Y is modelled on $\mathbb{C} \times X$. Since $b^{2}(X)=b^{4}(X)=2$, the Betti numbers of Y satisfy

$$
b^{k}(Y)=b^{k}(W)+2 b^{k-2}(\Sigma)+2 b^{k-4}(\Sigma)
$$

But Σ has genus 3, and so its Betti numbers are $b^{0}(\Sigma)=b^{2}(\Sigma)=1$ and $b^{1}(\Sigma)=6$. Combining this with (17) gives the Betti numbers of Y. The last part follows as in Proposition 7.2. q.e.d.

Define $\sigma: W \rightarrow W$ by

$$
\sigma:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{4}, \bar{z}_{5}\right] .
$$

The only fixed point of σ is p_{1}. Moreover, σ lifts to the resolution Y of W, and $\sigma: Y \rightarrow Y$ is an antiholomorphic involution which fixes only p_{1} in Y. Thus Condition 5.1 holds for Y and σ, and we can apply the construction of $\S 5$, and resolve $Z=Y /\langle\sigma\rangle$ to get a simply-connected 8 -manifold M. Proceeding in the usual way, the end result is

Theorem 8.6. This compact 8-manifold M has Betti numbers

$$
b^{0}=1, \quad b^{1}=b^{2}=0, b^{3}=6, b^{4}=3730, \quad b_{+}^{4}=2493 \text { and } b_{-}^{4}=1237
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M, which form a smooth family of dimension 1238.

Note that $b^{3}>0$ in this example; this is because the resolution of the singular curve Σ contributes $H^{1}(\Sigma, \mathbb{C}) \otimes H^{2}(X, \mathbb{C})=\mathbb{C}^{6} \otimes \mathbb{C}^{2}=\mathbb{C}^{12}$ to $H^{3}(Y, \mathbb{C})$. Half of this \mathbb{C}^{12} is σ-invariant, and so pushes down to $H^{3}(Z, \mathbb{C})$ and lifts to $H^{3}(M, \mathbb{C})$.

9. A hypersurface in $\mathbb{C P}_{1,1,1,1,2,2}^{5}$ over \mathbb{Z}_{2}

Let W be the hypersurface of degree 8 in $\mathbb{C P}_{1,1,1,1,2,2}^{5}$ given by

$$
W=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{1,1,1,1,2,2}^{5}: z_{0}^{8}+z_{1}^{8}+z_{2}^{8}+z_{3}^{8}+z_{4}^{4}+z_{5}^{4}=0\right\}
$$

Then $c_{1}(W)=0$. We find that W has four singular points p_{1}, \ldots, p_{4} modelled on $\mathbb{C}^{4} /\{ \pm 1\}$, given by

$$
\begin{array}{ll}
{\left[0,0,0,0,1, \mathrm{e}^{\pi i / 4}\right],} & {\left[0,0,0,0,1, \mathrm{e}^{3 \pi i / 4}\right],} \\
{\left[0,0,0,0,1, \mathrm{e}^{5 \pi i / 4}\right],} & {\left[0,0,0,0,1, \mathrm{e}^{7 \pi i / 4}\right]}
\end{array}
$$

Define $\beta: W \rightarrow W$ by

$$
\beta:\left[z_{0}, \ldots, z_{5}\right] \mapsto\left[i z_{0}, i z_{1}, i z_{2}, i z_{3}, z_{4}, z_{5}\right] .
$$

Then $\beta^{2}=1$, as $\left[z_{0}, \ldots, z_{5}\right]=\left[-z_{0},-z_{1},-z_{2},-z_{3}, z_{4}, z_{5}\right]$ in $\mathbb{C P}_{1,1,1,1,2,2}^{5}$. The fixed set of β is the four points p_{1}, \ldots, p_{4} together with the compact complex surface S in W, given by

$$
S=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}, 0,0\right] \in \mathbb{C P}_{1,1,1,1,2,2}^{5}: z_{0}^{8}+z_{1}^{8}+z_{2}^{8}+z_{3}^{8}=0\right\}
$$

Thus $W /\langle\beta\rangle$ is a compact complex orbifold. Its singular set is the disjoint union of p_{1}, \ldots, p_{4} and S. Each singular point p_{j} is modelled on $\mathbb{C}^{4} / \mathbb{Z}_{4}$, where the generator α of \mathbb{Z}_{4} acts on \mathbb{C}^{4} by (6). Each singular point in S is locally modelled on $\mathbb{C}^{2} \times \mathbb{C}^{2} /\{ \pm 1\}$.

Let Y be the blow-up of $W /\langle\beta\rangle$ along S. Because the singularities normal to S are modelled on $\mathbb{C}^{2} /\{ \pm 1\}$, this is a partial crepant resolution. So Y is a compact complex orbifold with isolated singular points p_{1}, \ldots, p_{4}, modelled on $\mathbb{C}^{4} /\langle\alpha\rangle$. Now $c_{1}(W)=0$, so $c_{1}(W /\langle\beta\rangle)=0$, and as Y is a partial crepant resolution of $W /\langle\beta\rangle$ we see that $c_{1}(Y)=0$.

Proposition 9.1. The Betti numbers of Y are

$$
b^{0}=1, \quad b^{1}=0, \quad b^{2}=2, \quad b^{3}=0 \quad \text { and } \quad b^{4}=1806
$$

Also $Y \backslash\left\{p_{1}, \ldots, p_{4}\right\}$ is simply-connected and $h^{2,0}(Y)=0$.
Proof. As in Proposition 7.1, we find $\chi(W)=2708$ and $\chi(S)=304$. Thus

$$
\begin{aligned}
\chi(W /\langle\beta\rangle) & =\frac{1}{2}(\chi(W)+\chi(4 \text { points })+\chi(S)) \\
& =\frac{1}{2}(2708+4+304)=1508
\end{aligned}
$$

Using Theorem 6.5 we find that W has $b^{0}=b^{2}=1$ and $b^{1}=b^{3}=0$, and it soon follows that $W /\langle\beta\rangle$ also has $b^{0}=b^{2}=1$ and $b^{1}=b^{3}=0$. Since $\chi(W /\langle\beta\rangle)=1508$ we see that $b^{4}(W /\langle\beta\rangle)=1504$.

Now Y is the blow-up of $W /\langle\beta\rangle$ along S, so that each point of S is replaced by a copy of $\mathbb{C P}^{1}$. It can be shown that the Betti numbers of Y satisfy

$$
\begin{equation*}
b^{k}(Y)=b^{k}(W /\langle\beta\rangle)+b^{k-2}(S) \tag{18}
\end{equation*}
$$

But S can be thought of as an octic in $\mathbb{C P}^{3}$, and by the usual method we find that the Betti numbers of S are $b^{0}=1, b^{1}=0, b^{2}=302$, $b^{3}=0$ and $b^{4}=1$. Combining these with (18) and the Betti numbers of $W /\langle\beta\rangle$ above gives the Betti numbers of Y. The last part follows as usual. q.e.d.

Define an antiholomorphic involution $\sigma: W \rightarrow W$ by

$$
\sigma:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{5}, \bar{z}_{4}\right]
$$

The fixed points of σ are exactly the singular points p_{1}, \ldots, p_{4} of W. Also σ commutes with β, and acts freely on S. Hence σ pushes down to
an antiholomorphic involution of $W /\langle\beta\rangle$, and lifts to the blow-up Y, to give an antiholomorphic involution $\sigma: Y \rightarrow Y$ with fixed points p_{1}, \ldots, p_{4}.

Thus Condition 5.1 holds for Y and σ, and in the usual way we choose a simply-connected resolution M of $Z=Y /\langle\sigma\rangle$ satisfying:

Theorem 9.2. This compact 8-manifold M has Betti numbers

$$
b^{0}=1, \quad b^{1}=b^{2}=b^{3}=0, b^{4}=910, \quad b_{+}^{4}=615 \text { and } b_{-}^{4}=295 .
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M, which form a smooth family of dimension 296.

9.1 A variation on this example

We shall use the idea of $\S 7.1$ to make a second 8 -manifold M^{\prime} from the orbifold Y above. Let W and Y be as in $\S 9.1$, but define $\sigma^{\prime}: W \rightarrow W$ by

$$
\sigma^{\prime}:\left[z_{0}, \ldots, z_{5}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{4}, i \bar{z}_{5}\right] .
$$

Then σ^{\prime} pushes down to $W /\langle\beta\rangle$ and lifts to Y as above. However, this time σ^{\prime} fixes the singular points $p_{1}=\left[0,0,0,0,1, \mathrm{e}^{\pi i / 4}\right]$ and $p_{2}=$ $\left[0,0,0,0,1, \mathrm{e}^{5 \pi i / 4}\right]$ in Y, but it swaps round $p_{3}=\left[0,0,0,0,1, \mathrm{e}^{3 \pi i / 4}\right]$ and $p_{4}=\left[0,0,0,0,1, \mathrm{e}^{7 \pi i / 4}\right]$.

Thus, Condition 5.1 does not hold for Y and σ^{\prime}, as the fixed set $\left\{p_{1}, p_{2}\right\}$ of σ^{\prime} does not coincide with the singular set $\left\{p_{1}, \ldots, p_{4}\right\}$ of Y. So let Y^{\prime} be the blow-up of Y at p_{3} and p_{4}. Then Y^{\prime} is a partial crepant resolution of Y, as the singularities at p_{3}, p_{4} are modelled on $\mathbb{C}^{4} / \mathbb{Z}_{4}$. The singularities of Y^{\prime} are p_{1}, p_{2}, and σ^{\prime} lifts to an antiholomorphic involution of Y^{\prime} fixing only p_{1} and p_{2}.

We find the Betti numbers of Y^{\prime} by adding contributions to those of Y, as in $\S 7.1$. Applying the construction of $\S 5$ to Y^{\prime} and σ^{\prime} gives a simply-connected 8-manifold M^{\prime}, such that

Theorem 9.3. This compact 8-manifold M^{\prime} has Betti numbers

$$
b^{0}=1, \quad b^{1}=0, b^{2}=1, \quad b^{3}=0, b^{4}=908, \quad b_{+}^{4}=614 \text { and } b_{-}^{4}=294
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M^{\prime}, which form a smooth family of dimension 295.

10. Complete intersections in $\mathbb{C P}_{a_{0}, \ldots, a_{6}}^{6}$

We now try starting with the intersection of two hypersurfaces in $\mathbb{C P}_{a_{0}, \ldots, a_{6}}^{6}$ 。

10.1 The intersection of two octics in $\mathbb{C P}_{1,1,1,1,4,4,4}^{6}$

Let Y be the complete intersection of two octics in $\mathbb{C P}_{1,1,1,1,4,4,4}^{6}$ given by

$$
\begin{aligned}
Y=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{1,1,1,1,4,4,4}^{6}: z_{0}^{8}+z_{1}^{8}+2 i z_{2}^{8}-2 i z_{3}^{8}+z_{4}^{2}-z_{5}^{2}=0\right. \\
\left.2 i z_{0}^{8}-2 i z_{1}^{8}+z_{2}^{8}+z_{3}^{8}+z_{4}^{2}-z_{6}^{2}=0\right\}
\end{aligned}
$$

Then $c_{1}(Y)=0$. We find that Y has 4 singular points

$$
\begin{aligned}
& p_{1}=[0,0,0,0,1,1,1], \quad p_{2}=[0,0,0,0,1,-1,-1] \\
& p_{3}=[0,0,0,0,1,1,-1] \quad \text { and } \quad p_{4}=[0,0,0,0,1,-1,1],
\end{aligned}
$$

satisfying Condition 5.1.
By adapting the method of $\S 6.3$ we can show that $\chi(Y)=2580$, and applying Theorem 6.5 twice we find that $b^{k}(Y)=b^{k}\left(\mathbb{C P}_{1, \ldots, 4}^{6}\right)$ for $0 \leq k \leq 3$. Thus we prove:

Proposition 10.1. The Betti numbers of Y are

$$
b^{0}=1, \quad b^{1}=0, \quad b^{2}=1, \quad b^{3}=0 \quad \text { and } \quad b^{4}=2576
$$

Also $Y \backslash\left\{p_{1}, \ldots, p_{4}\right\}$ is simply-connected and $h^{2,0}(Y)=0$.
Define an antiholomorphic involution $\sigma: Y \rightarrow Y$ by

$$
\sigma:\left[z_{0}, \ldots, z_{6}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{4}, \bar{z}_{5}, \bar{z}_{6}\right] .
$$

The fixed points of σ are exactly the singular points p_{1}, \ldots, p_{4} of Y, and Condition 5.1 holds for Y and σ. Proceeding in the usual way, we set $Z=Y /\langle\sigma\rangle$ and resolve Z to get a simply-connected 8-manifold M, which satisfies:

Theorem 10.2. This compact 8-manifold M has Betti numbers

$$
b^{0}=1, \quad b^{1}=b^{2}=b^{3}=0, \quad b^{4}=1294, \quad b_{+}^{4}=871 \text { and } b_{-}^{4}=423
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M, which form a smooth family of dimension 424.

10.2 A variation on this example

Now let Y be as in $\S 10.1$, but define $\sigma^{\prime}: Y \rightarrow Y$ by

$$
\sigma^{\prime}:\left[z_{0}, \ldots, z_{6}\right] \longmapsto\left[\bar{z}_{3},-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{0}, \bar{z}_{4}, \bar{z}_{6}, \bar{z}_{5}\right]
$$

Then σ^{\prime} is an antiholomorphic involution, with fixed points p_{1} and p_{2}, which swaps round p_{3} and p_{4}. Following the method of $\S 7.1$, define Y^{\prime} to be the blow-up of Y at p_{3} and p_{4}. Then Y^{\prime} is a Calabi-Yau orbifold, σ^{\prime} lifts to Y^{\prime}, and Condition 5.1 holds for Y^{\prime} and σ^{\prime}.

As usual we set $Z^{\prime}=Y^{\prime} /\left\langle\sigma^{\prime}\right\rangle$ and resolve Z^{\prime} to get a simplyconnected 8-manifold M^{\prime}, such that we have

Theorem 10.3. This compact 8-manifold M^{\prime} has Betti numbers

$$
b^{0}=1, \quad b^{1}=0, \quad b^{2}=1, \quad b^{3}=0, \quad b^{4}=1292, \quad b_{+}^{4}=870 \quad \text { and } b_{-}^{4}=422
$$

There exist metrics with holonomy $\operatorname{Spin}(7)$ on M^{\prime}, which form a smooth family of dimension 423.

10.3 The intersection of two 12-tics in $\mathbb{C P}_{3,3,3,3,4,4,4}^{6}$

Let $P\left(z_{4}, z_{5}, z_{6}\right)$ and $Q\left(z_{4}, z_{5}, z_{6}\right)$ be generic homogeneous cubic polynomials with real coefficients, and define W to be the complete intersection of two 12 -tics in $\mathbb{C P}_{3,3,3,3,4,4,4}^{6}$ given by

$$
\begin{aligned}
W=\left\{\left[z_{0}, \ldots, z_{5}\right] \in \mathbb{C P}_{3,3,3,3,4,4,4}^{6}: z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}+P\left(z_{4}, z_{5}, z_{6}\right)\right. & =0 \\
i z_{0}^{4}-i z_{1}^{4}+2 i z_{2}^{4}-2 i z_{3}^{4}+Q\left(z_{4}, z_{5}, z_{6}\right) & =0\}
\end{aligned}
$$

Then $c_{1}(W)=0$. As P and Q are generic, the singular set of W is the disjoint union of the 9 points p_{1}, \ldots, p_{9} given by

$$
\left\{\left[0,0,0,0, z_{4}, z_{5}, z_{6}\right] \in \mathbb{C P}_{3,3,3,3,4,4,4}^{6}: P\left(z_{4}, z_{5}, z_{6}\right)=Q\left(z_{4}, z_{5}, z_{6}\right)=0\right\}
$$

and the curve Σ of genus 33 given by

$$
\begin{aligned}
\Sigma=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}, 0,0,0\right] \in \mathbb{C P}_{3,3,3,3,4,4,4}^{6}:\right. & z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0 \\
& \left.i z_{0}^{4}-i z_{1}^{4}+2 i z_{2}^{4}-2 i z_{3}^{4}=0\right\}
\end{aligned}
$$

Each point p_{j} satisfies Condition 5.1, and each point of Σ is modelled on $\mathbb{C} \times \mathbb{C}^{3} / \mathbb{Z}_{3}$, where the action of \mathbb{Z}_{3} on \mathbb{C}^{3} is generated by

$$
\beta:\left(z_{4}, z_{5}, z_{6}\right) \mapsto\left(\mathrm{e}^{2 \pi i / 3} z_{4}, \mathrm{e}^{2 \pi i / 3} z_{5}, \mathrm{e}^{2 \pi i / 3} z_{6}\right)
$$

Define an antiholomorphic involution $\sigma: W \rightarrow W$ by

$$
\sigma:\left[z_{0}, \ldots, z_{6}\right] \longmapsto\left[\bar{z}_{1},-\bar{z}_{0}, \bar{z}_{3},-\bar{z}_{2}, \bar{z}_{4}, \bar{z}_{5}, \bar{z}_{6}\right] .
$$

Then the fixed points of σ are some subset of $\left\{p_{1}, \ldots, p_{9}\right\}$. Exactly which subset depends on the choice of P and Q, but σ must fix an odd number of the p_{j}, as the remaining p_{j} are swapped in pairs.

So let σ fix $2 k+1$ of the p_{j}, for some $k=0, \ldots, 4$, and number the p_{j} such that σ fixes $p_{1}, \ldots, p_{2 k+1}$ and swaps $p_{2 k+2}, \ldots, p_{9}$ in pairs. Define Y_{k} to be the blow-up of W along Σ and at the points $p_{2 k+2}, \ldots, p_{9}$. Then Y_{k} is a partial crepant resolution of W. Thus Y_{k} is a Calabi-Yau orbifold, with singular points $p_{1}, \ldots, p_{2 k+1}$. Also σ lifts to Y_{k} to give an antiholomorphic involution $\sigma: Y_{k} \rightarrow Y_{k}$ with fixed points $p_{1}, \ldots, p_{2 k+1}$.

It can be shown that we can choose P and Q so that k takes any value in $\{0,1,2,3,4\}$. For example, if $P=z_{4}^{3}-z_{5}^{3}$ and $Q=z_{4}^{3}-z_{6}^{3}$ then σ fixes only $p_{1}=[0,0,0,0,1,1,1]$, so that $k=0$, but if $P=z_{4}^{2} z_{5}-z_{5}^{3}$ and $Q=z_{4}^{2} z_{6}-z_{6}^{3}$ then σ fixes the 9 points $\left[0,0,0,0,1, z_{5}, z_{6}\right]$ for $z_{5}, z_{6} \in$ $\{1,0,-1\}$, and $k=4$.

Combining the methods used to prove Propositions 8.5 and 10.1, we get

Proposition 10.4. The Betti numbers of Y_{k} are $b^{0}=1, b^{1}=0$, $b^{2}=10-2 k, b^{3}=66, b^{4}=395-2 k, b_{+}^{4}=262$ and $b_{-}^{4}=133-2 k$. Also $Y_{k} \backslash\left\{p_{1}, \ldots, p_{2 k+1}\right\}$ is simply-connected, and $h^{2,0}\left(Y_{k}\right)=0$.

In the usual way we resolve $Z_{k}=Y_{k} /\langle\sigma\rangle$ to get M_{k}, which satisfies
Theorem 10.5. For each $k=0, \ldots, 4$ there is a compact 8 -manifold M_{k} with Betti numbers $b^{0}=1, b^{1}=0, b^{2}=4-k, b^{3}=33$, $b^{4}=200+2 k, b_{+}^{4}=132+k$ and $b_{-}^{4}=68+k$. There exist metrics with holonomy $\operatorname{Spin}(7)$ on M_{k}, which form a smooth family of dimension $69+$ k.

These examples have the largest value of b^{3} and the smallest values of b^{4} that the author has found using this construction.

11. Conclusions

In Table 1 we give the Betti numbers $\left(b^{2}, b^{3}, b^{4}\right)$ of the compact 8manifolds with holonomy $\operatorname{Spin}(7)$ that we constructed in $\S 7-\S 10$. There are 14 sets of Betti numbers, none of which coincide with any in [10], so we have found at least 14 topologically distinct new examples of compact 8-manifolds with holonomy $\operatorname{Spin}(7)$.

Table 1: Betti numbers $\left(b^{2}, b^{3}, b^{4}\right)$ of compact $\operatorname{Spin}(7)$-manifolds

$(4,33,200)$	$(3,33,202)$	$(2,33,204)$	$(1,33,206)$	$(0,33,208)$
$(1,0,908)$	$(0,0,910)$	$(1,0,1292)$	$(0,0,1294)$	$(1,0,2444)$
$(0,0,2446)$	$(0,6,3730)$	$(0,0,4750)$	$(0,0,11662)$	

The examples of $\S 7-\S 10$ are by no means all the manifolds that can be produced using the methods of this paper, but only a selection chosen for their simplicity and to illustrate certain techniques. Readers are invited to look for other examples themselves; the author would be particularly interested in examples which have especially large or small values of b^{4}.

We have also chosen to restrict our attention in $\S 5-\S 10$ to orbifolds Y all of whose singularities are modelled on $\mathbb{C}^{4} / \mathbb{Z}_{4}$, where the generator α of \mathbb{Z}_{4} acts as in (6). This is not a necessary restriction, and there are other types of singularities for Y and Z for which the construction would work, such as the \mathbb{R}^{8} / G^{n} considered in $\S 4.3$, and which occur in suitable orbifolds Y. However, the author has not found many such Y; the $\mathbb{C}^{4} / \mathbb{Z}_{4}$ singularities do seem to be the easiest to construct.

References

[1] M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affines et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279-330.
[2] R. L. Bryant, Metrics with exceptional holonomy, Ann. of Math. 126 (1987) 525-576.
[3] R. L. Bryant \& S. M. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829-850.
[4] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. 12 (1979) 269-294.
[5] P. Candelas, M. Lynker \& R. Schimmrigk, Calabi-Yau manifolds in weighted \mathbb{P}_{4}^{*}, Nucl. Phys. B341 (1990) 383-402.
[6] M. Goresky \& R. MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. Vol. 14, Springer, Berlin, 1988.
[7] P. Green \& T. Hübsch, Polynomial deformations and cohomology of Calabi-Yau manifolds, Comm. Math. Phys. 113 (1987) 505-528.
[8] P. Griffiths \& J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
[9] S. Hosono, A. Klemm, S. Theisen \& S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys. B433 (1995) 501-544. hep-th/9406055.
[10] D. D. Joyce, Compact 8-manifolds with holonomy Spin(7), Invent. Math. 123 (1996) 507-552.
[11] \qquad , Compact Riemannian 7-manifolds with holonomy G_{2}. I, J. Differential Geom. 43 (1996) 291-328.
[12] \qquad , Compact Riemannian 7-manifolds with holonomy G_{2}. II, J. Differential Geom. 43 (1996) 329-375.
[13] \qquad , Compact manifolds with exceptional holonomy, Geometry and Physics, (eds. J.E. Andersen, J. Dupont, H. Pedersen and A. Swann), Lecture notes in Pure and Applied Math. 184, pp. 245-252. Marcel Dekker, New York, 1997.
[14] , Compact Riemannian manifolds with special holonomy, to be published in Oxford, Math. Monographs, 2000.
[15] _, Asymptotically locally Euclidean metrics with holonomy $\mathrm{SU}(m)$, To appear in Ann. Global Anal. Geom. math.AG/9905041, 1999.
[16] P. B. Kronheimer, The construction of ALE spaces as hyperkähler quotients, J. Differential Geom. 29 (1989) 665-683.
[17] \qquad , A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989) 685-697.
[18] S. M. Salamon, Riemannian geometry and holonomy groups, Pitman Res. Notes Math. Ser. 201, 1989.
[19] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957) 464-492.
[20] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations. I, Comm. Pure Appl. Math. 31 (1978) 339-411.

Lincoln College, Oxford

[^0]: Received October 19, 1999.

